DOI QR코드

DOI QR Code

The Specific Case Analysis of Biomineralization Induced by Sulfate Reducing Bacteria

  • Liu, Hongwei (Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology) ;
  • Qin, Shuang (Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology) ;
  • Fu, Chaoyang (Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology) ;
  • Xiao, Fei (Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology) ;
  • Wang, Deli (Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology) ;
  • Han, Xia (Sinopec Oilfield engineering design Corporation) ;
  • Wang, Tianli (Sinopec Oilfield engineering design Corporation) ;
  • Liu, Hongfang (Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology)
  • Received : 2017.11.14
  • Accepted : 2017.12.26
  • Published : 2017.12.31

Abstract

The effects of sulfate reducing bacteria (SRB) on the corrosion and scaling of the Q235 carbon steel has been investigated in the simulated sewage water and oil field gathering pipelines production water, using scanning electron microscopy (SEM), energy dispersive x-ray spectrometry (EDS), and three-dimensional stereoscopic microscope. Results indicated that the concentration of SRB reached the maximum value on the ninth day in simulated sewage water with a large amount of scaling on the surface of specimen. In oil field gathering pipelines, a large amount of scaling and mineralization of mineral salts and thick deposition of extracellular polymeric substance (EPS) layers were also observed on the surface of specimen. The thickness of biofilm was about $245{\mu}m$ within 30 days. After adding microbicides, the thickness of corrosion products film was only up to $48-106{\mu}m$ within 30 days, suggesting that SRB could induce biomineralization. Under-deposit corrosion morphology was uniform in the absence of microbicides while local corrosion was observed in the presence of microbicides.

Keywords

References

  1. H. A. Lowenstam and S. Weiner, On biomineralization, pp. 1-336, Oxford University Press, UK (1989).
  2. L. Addadi, S. Raz, and S. Weiner, Adv. Mater., 15, 959 (2003). https://doi.org/10.1002/adma.200300381
  3. S. Weiner and P. M. Dove, Rev. Mineral. Geochem., 54, 1 (2003). https://doi.org/10.2113/0540001
  4. K. O. Konhauser, Earth Sci. Rev., 43, 91 (1998). https://doi.org/10.1016/S0012-8252(97)00036-6
  5. K. L. Gallagher, C. Dupraz, O. Braissant, R. S. Norman, A. W. Decho, and P. T. Visscher, Mineralization of sedimentary biofilms: modern mechanistic insights in Biofilm: Formation, Development and Properties, Chapter 6, pp. 1-33, Nova Science, New York (2010).
  6. D. Emerson, E. J. Fleming, and J. M. McBeth, Annu. Rev. Microbiol., 64, 561 (2010). https://doi.org/10.1146/annurev.micro.112408.134208
  7. J. Miot, K. Benzerara, G. Morin, A. Kappler, S. Bernard, M. Obst, C. Ferard, F. Skouri-Panet, J.-M. Guigner, N. Posth, M. Galvez, G. E. Brown Jr., and F. Guyot, Geochim. Cosmochim. Ac., 73, 696 (2009). https://doi.org/10.1016/j.gca.2008.10.033
  8. J. F. Heidelberg, R. Seshadri, S. A. Haveman, C. L. Hemme, I. T. Paulsen, J. F. Kolonay, J. A. Eisen, N. Ward, B. Methe, L. M. Brinkac, S. C. Daugherty, R. T. Deboy, R. J. Dodson, A. S. Durkin, R. Madupu, W. C. Nelson, S. A. Sullivan, D. Fouts, D. H. Haft, J. Selengut, J. D. Peterson, T. M. Davidsen, N. Zafar, L. Zhou, D. Radune, G. Dimitrov, M. Hance, K. Tran, H. Khouri, J. Gill, T. R. Utterback, T. V. Feldblyum, J. D. Wall, G. Voordouw and C. M. Fraser, Nat. Biotechnol., 22, 554 (2004). https://doi.org/10.1038/nbt959
  9. O. Braissant, A. W. Decho, C. Dupraz, C. Glunk, K. M. Przekop, and P. T. Visscher, Geobiology, 5, 401 (2007). https://doi.org/10.1111/j.1472-4669.2007.00117.x
  10. A. Spadafora, E. Perri, J. A. McKenzie, and C. Vasconcelos, Sedimentology, 57, 27 (2010). https://doi.org/10.1111/j.1365-3091.2009.01083.x
  11. M. Labrenz, G. K. Druschel, and T. Thomsen-Ebert, Science, 290, 1744 (2000). https://doi.org/10.1126/science.290.5497.1744
  12. Y. Shen, R. Buick, and D. E. Canfield, Nature, 410, 77 (2001). https://doi.org/10.1038/35065071
  13. A. Müller and B. Krebs, Sulfur: Its Significance for Chemistry, for the Geo-, Bio-, and Cosmosphere and Technology; Studies in Inorganic Chemisty, Book 5, pp. 1-526, Elsevier Science Ltd., Amsterdam (1984).
  14. B. Little, P. Wagner, K. Hart, R. Ray, D. Lavoie, K. Nealson, and C. Aguilar, Biodegradation, 9, 1 (1998). https://doi.org/10.1023/A:1008264313065
  15. E. I. Sungur and A. Cotuk, Environ. Monit. Assess., 104, 211 (2005). https://doi.org/10.1007/s10661-005-1612-x
  16. H. A. Videla, Manual de Biocorrosion, pp. 1-304, CRC Press, Florida (1996).
  17. M. J. Hernandez Gayosso, G. Zavala Olivares, N. Ruiz Ordaz, C. Juarez Ramirez, R. Garcia Esquivel, and A. Padilla Viveros, Electrochim. Acta, 49, 4295 (2004). https://doi.org/10.1016/j.electacta.2004.03.038
  18. A. Spadafora, E. Perri, C. Vasconcelos, and J. A. Mckenzie, Proc. European Geosciences Union Conf., Vienna, Austria (2008).
  19. Q. Ye, K. J. Li, P. P. Guo, and H. F. Liu, Corros. Sci. Protect. Technol., 25, 195 (2013).
  20. H. W. Liu, H. F. Liu, S. Qin, X. Han, and T. Wang, Corros. Sci. Protect. Technol., 1, 7 (2015).
  21. Z. H. Dong, T. Liu, and H. F. Liu, Biofouling, 27, 487 (2011). https://doi.org/10.1080/08927014.2011.584369
  22. J. Duan, S. Wu, X. Zhang, G. Huang, M. Du, and B. Hou, Electrochim. Acta, 54, 22 (2008). https://doi.org/10.1016/j.electacta.2008.04.085
  23. A. W. Decho, Ecol. Eng., 36, 137 (2010). https://doi.org/10.1016/j.ecoleng.2009.01.003
  24. B. J. Little, F. B. Mansfeld, P. J. Arps, and J. C. Earthman, Microbiologically Influenced Corrosion, Wiley Online Library, Wiley, New York (2007).
  25. G. M. Gadd, Curr. Opin. Biotechnol., 11, 271 (2000). https://doi.org/10.1016/S0958-1669(00)00095-1
  26. S. Mann, Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry, vol. 5, pp. 1-210, Oxford University Press, New York (2001).
  27. A. Soetaert, T. Vandenbrouck, K. van der Ven, P. Van Remortel, R. Blust, and W. M. de Coen, Aquat. Toxicol., 83, 212 (2007). https://doi.org/10.1016/j.aquatox.2007.04.010
  28. C. Dupraz, R. P. Reid, O. Braissant, A. W. Decho, R. S. Norman, and P. T. Visscher, Earth Sci. Rev., 96, 141 (2009). https://doi.org/10.1016/j.earscirev.2008.10.005