DOI QR코드

DOI QR Code

An Algorithm of Identifying Roaming Pedestrians' Trajectories using LiDAR Sensor

LiDAR 센서를 활용한 배회 동선 검출 알고리즘 개발

  • Jeong, Eunbi (Transport Systems Research Team, Korea Railroad Research Institute) ;
  • You, So-Young (Transport Systems Research Team, Korea Railroad Research Institute)
  • 정은비 (한국철도기술연구원 교통체계분석연구팀) ;
  • 유소영 (한국철도기술연구원 교통체계분석연구팀)
  • Received : 2017.10.19
  • Accepted : 2017.11.03
  • Published : 2017.12.31

Abstract

Recently terrorism targets unspecified masses and causes massive destruction, which is so-called Super Terrorism. Many countries have tried hard to protect their citizens with various preparation and safety net. With inexpensive and advanced technologies of sensors, the surveillance systems have been paid attention, but few studies associated with the classification of the pedestrians' trajectories and the difference among themselves have attempted. Therefore, we collected individual trajectories at Samseoung Station using an analytical solution (system) of pedestrian trajectory by LiDAR sensor. Based on the collected trajectory data, a comprehensive framework of classifying the types of pedestrians' trajectories has been developed with data normalization and "trajectory association rule-based algorithm." As a result, trajectories with low similarity within the very same cluster is possibly detected.

최근 국제적인 테러 위협이 불특정 다수를 대상으로 발생하고 있으며, 이러한 위협에서 시민을 보호하기 위한 다양한 대책이 논의 중이다. 저렴해진 센서 기술을 활용한 사전 감시 시스템에 대한 요구가 높아지고 있으나, 보행 궤적의 고유 특성 검출 및 상세 분석 연구가 미비한 실정이다. 본 연구에서는 상용화된 보행 동선 솔루션을 활용하여, 삼성역 개찰구에서 코엑스와 직접 연결되는 연결 통로 (3-6번 출구 근처) 일대의 보행 동선 궤적 조사를 수행하였다. 조사된 궤적 자료를 바탕으로, 궤적 자료의 정규화 기법, Clustering 방법을 중심으로 보행 궤적을 유형화하고 배회 동선을 추출하는 분석 방법론을 제시하였다. 분석 결과, 동일 군집내에서 유사성이 크게 떨어지는 보행 궤적의 검출 가능성을 검증하였다.

Keywords

References

  1. Bak J., Won, J. and Kim S.(2006), "Trajectory Clustering in Road Network Environment," The KIPS Transactions: Part D, vol. 16, no. 3, pp.317-326.
  2. Bishop C. M.(2006), Pattern recognition and machine learning, vol. 4, no. 4, pp.12, New York: Springer.
  3. Chen L., Lv, M. and Chen G.(2010), "A System for Destination and Future Route Prediction based on Trajectory Mining," Pervasive and Mobile Computing, pp.657-676
  4. Giannotti F., Nanni M., Pedreschi D., Pinelli F. and Reanso C.(2011), "Unveiling the Complexity of Human Mobility by Querying and Mining Massive Trajectory Data," Very Large Data Bases, pp.695-719.
  5. Gose E. and Johnsonbaugh R.(1996), Pattern Recognition and Image Analysis, Prentice Hall, 1996, pp.199-219, ISBN: 0132364158.
  6. Hong J., Park K., Han Y. and Lee Y.(2013). "A Method for Measuring Similarity between Trajectory Graph Sets," Journal of KISE: Database, vol. 40, no. 3, pp.153-158.
  7. Jang M., Yoon M. and Chang J.(2012), "A Survey on Moving Object Trajectory Mining Techiques in Location-based Service," the Korean Institute of Information Scientists and Engineers, vol. 28, no. 1, pp.67-88.
  8. Kang N., Kang J. and Yong H.(2017), "Performance Comparison of Clustering Techniques for Spatio-Temporal Data," Journal of Intelligent Information Systems, vol. 10, no. 2, pp.15-37.
  9. Kim Y., Vista R. and Chang J.(2007), "Trajectory Search Algorithm for Spatio-temporal Similarity of Moving Objects on Road Network," Journal of Korea Spatial Information System Society, vol. 9, no. 1, pp.59-77.
  10. Lee J., Hang J. and Cheng H.(2010), "Mining Discriminative Patterns for Classifying Trajectories on Road Networks," Knowledge and Data Engineering, IEEE Transactions, pp.713-726.
  11. Lee S., Kim C., Kwak Y., Kang H. and Ko D.(2013), "Approximate Trajectory Clustering in Road Network with Considering Similarity of Roads based on Seed Trajectory," Journal of Korean Institute of Information Techology, vol. 11, no. 3, pp.123-131.
  12. Park J.(2013), "A Study on the Revised Method using Normalized RGB Features in the Moving Object Detection by Background Subtraction," the Journal of the Korea Institute of Intelligent Transport System, vol. 12 no. 6, pp.108-115. https://doi.org/10.12815/kits.2013.12.6.108
  13. Qiao S., Tang C. and Chau M.(2010), "PutMode: Prediction of Uncertain Trajectories in Moving Objects Databases," Appl. Intell, pp.370-386.