DOI QR코드

DOI QR Code

다짐으로 인한 순환골재의 파쇄 및 공학적 특성에 관한 연구

A Study on Crushing and Engineering Characteristics Caused by Compaction of Recycled Aggregates

  • 박성식 (경북대학교 공과대학 건설환경에너지공학부) ;
  • 천커챵 (경북대학교 공과대학 건설환경에너지공학부) ;
  • 이영재 (경북대학교 공과대학 토목공학과) ;
  • 문홍득 (경남과학기술대학교 건설환경공과대학 토목공학과)
  • Park, Sung-Sik (Dept. of Civil Eng., Kyungpook National Univ.) ;
  • Chen, KeQiang (Dept. of Civil Eng., Kyungpook National Univ.) ;
  • Lee, Young-Jae (Dept. of Civil Eng., Kyungpook National Univ.) ;
  • Moon, Hong-Duk (Dept. of Civil Eng., Gyeongnam National Univ. of Science and Technology)
  • 투고 : 2017.09.27
  • 심사 : 2017.11.22
  • 발행 : 2017.12.31

초록

노후화된 콘크리트 포장 및 건물 철거 시 많은 양의 폐콘크리트가 발생하고 있다. 본 연구에서는 폐콘크리트를 파쇄 처리하여 생산된 순환골재가 다시 인근 도로 현장의 노체 또는 노상 재료로 사용될 경우, 다짐으로 인한 파쇄정도와 입도 변화가 공학적 특성(투수계수 및 전단강도)에 미치는 영향에 대해 연구하였다. 현장에서 수거된 순환골재의 크기를 3 종류(31.5-45.0mm, 19.0-31.5mm, 9.5-19.0mm)로 나눈 다음, 이를 일정한 비율로 혼합한 총 7 종류의 시료를 대상으로 수정 B 및 D 다짐시험을 실시하였다. 다짐으로 파쇄된 순환골재에 대한 체분석을 실시하여 다짐 에너지와 골재 크기에 따른 파쇄 정도를 4 종류의 파쇄지수($B_{15}$, $C_c$, $B_{10}$, $B_r$)로 계산하였다. 다짐에너지에 따른 파쇄지수는 지수에 따라 D 다짐의 경우가 2.0-8.0배 정도 더 높은 파쇄성을 보였으며, 가장 큰 골재의 파쇄성이 가장 작은 골재에 비해 1.4-3.0배 정도 더 높았다. 한편, 5.6-9.5mm 사이 순환골재를 분쇄하여 파쇄지수 중 $B_{15}$에 따라 1, 3, 10, 20, 30, 50, 60, 70이 되도록 입도 조정한 시료에 대해 투수시험과 직접전단시험을 실시하였다. 파쇄지수($B_{15}$)가 증가함에 따라 투수계수는 계속 감소하였으며, 파쇄지수가 50일 경우 1/22까지 감소하였다. 한편, 순환골재의 마찰각은 파쇄지수가 1에서 50까지 증가함에 따라 $46.1^{\circ}$에서 $54.5^{\circ}$까지 증가하다가 60 이후는 다시 감소하는 경향을 보였다.

A large amount of recycled aggregates was produced and crushed from old buildings and pavements. In this study, when these aggregates are re-used in subbase or subgrade materials in near construction sites, their engineering characteristics caused by crushing are investigated in terms of permeability and shear strength. Three different sizes of aggregates (31.5-45.0 mm, 19.0-31.5 mm, 9.5-19.0 mm) and their mixtures, a total of 7 types of aggregates were used in compaction tests (modified D and B methods). After compaction tests, aggregates were sieved and analyzed with four different breakage factors ($B_{15}$, $C_c$, $B_{10}$, $B_r$). The D compaction method gave 2.0-8.0 times more crushable than B compaction method. The breakage factors for the largest size aggregate was 1.4-3.0 times higher than those of the smallest size aggregate. For aggregates with 5.6-9.5 mm sizes, the samples were prepared with $B_{15}$ of 1, 3, 10, 20, 30, 50, 60, and 70 for permeability and direct shear tests. As $B_{15}$ increased, the hydraulic conductivity decreased up to 1/22 for $B_{15}=50$. As $B_{15}$ increased from 1 to 50, the peak friction angle increased from $46.1^{\circ}$ to $54.5^{\circ}$. On the other hand, the friction angle decreased after $B_{15}=60$.

키워드

참고문헌

  1. Datta, M., Gulhati, S. K., and Rao, G. V. (1979), "Crushing of Calcareous Sands during Shear", Proc. 11 th Offshore Technology Conf. Houston, pp.1459-1467.
  2. Hardin, B. O. (1985), "Crushing of Soil Particles", Journal of Geotechnical Engineering, Vol.111, No.10, pp.1177-1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177)
  3. Hazen, A. (1930), "Water Supply", in American Civil Engineer Handbook, Wiley, New York.
  4. Kim, S. J. (2017), "A Study on the Crushing Properties of Recycled Aggregated from Waste Concrete", Ph.D thesis, Kyungpook National University.
  5. Kim, Y. J. (2014), "Quality Assessment of Recycled Aggregate Concrete Using Microscopic Studies", Ph.D thesis, Hanyang University.
  6. KS F 2312 (2016), Standard method for soil compaction using a rammer.
  7. KS F 2343 (2007), Testing method for direct shear test of soils under consolidated drained conditions.
  8. Lade, P. V., Yamamuro, J. A., and Bopp, P. A. (1996), "Significance of Particle Crushing in Granular Materials", Journal of Geotechnical Engineering, Vol.122, No.4, pp.309-316. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:4(309)
  9. Lee, W. K., Choi, J. O., and Jung, Y. W. (2015), "Effect of the Amount of Attached Mortar of Recycled Aggregates on the Properties of Concrete", Journal of Korean Recycled Construction Resources Institute, Vol.3, No.2, pp.132-139. https://doi.org/10.14190/JRCR.2015.3.2.132
  10. Lee, K. L. and Farhoomand, I. (1967), "Compressibility and Crushing of Granular Soils in Anisotropic Traixial Compression", Canadian Geotechnical Journal, Vol.4, No.1, pp.68-99. https://doi.org/10.1139/t67-012
  11. Lee, J., Lee, B. C., Cho, Y. G., and Jung, S. H. (2016), "Chloride Diffusivity of Concrete using Recycled Aggregate by Strength Levels", Journal of the Korea Institute of Structural Maintenance and Inspection, Vol.20, No.2, pp.102-109. https://doi.org/10.11112/JKSMI.2016.20.2.102
  12. Ministry of Environment (2014), "Notification of No. 33, the Purpose of Use and Compulsory Quantity of Recycled Aggregates and Recycled Goods for the Compulsory Usage Construction with Recycled Aggregates".
  13. Ministry of Land, Infrastructure and Transport (2013), "Quality Standards for Recycled Aggregates".
  14. Ministry of Land, Transport and Maritime Affairs (2011), "Compaction Control Criteria on the Pavement Substructure".
  15. Park, S.S. (2000), "Bearing behavior of Crushable Volcanic Soils", Master Thesis, Tokyo Institute of Technology.
  16. Park, S. S., Kim, S. J., and Moon, H. D. (2016), "Crushing Characteristics of Single Particle of Recycled Aggregate from Waste Concrete", Journal of the Korean Geotechnical Society, Vol.32, No.12, pp.23-32. https://doi.org/10.7843/kgs.2016.32.12.23
  17. Shin, J. L., Kim, W. S., Baek, S. M., Kang, H. K., and Kwak, Y. K. (2015), "Structural Performance Evaluation of Steel Fiber-Reinforced Concrete Beams with Recycled Coarse Aggregates", Journal of the Korea Concrete Institute, Vol.27, No.3, pp.215-227. https://doi.org/10.4334/JKCI.2015.27.3.215

피인용 문헌

  1. Aggregate Roundness Classification Using a Wire Mesh Method vol.13, pp.17, 2020, https://doi.org/10.3390/ma13173682