DOI QR코드

DOI QR Code

Fabrication of CuSn Nanofibers Prepared via Electrospinning

  • Choi, Jinhee (Department of Chemistry, Pukyong National University) ;
  • Park, Juyun (Department of Chemistry, Pukyong National University) ;
  • Choi, Ahrom (Department of Chemistry, Pukyong National University) ;
  • Lee, Seokhee (Department of Chemistry, Pukyong National University) ;
  • Koh, Sung-Wi (Department of Mechanical System Engineering, Pukyong National University) ;
  • Kang, Yong-Cheol (Department of Chemistry, Pukyong National University)
  • Received : 2017.10.23
  • Accepted : 2017.12.25
  • Published : 2017.12.30

Abstract

The Cu and CuSn/PVP nanofibers were fabricated by electrospinning method by controlling various parameters. The precursor solution was prepared with copper(II) acetate monohydrate ($Cu(CH_3COO)_2$) and tin chloride dihydrate ($SnCl_2{\cdot}2H_2O$), and polyvinylpyrrolidone (PVP) for adjusting viscosity. The fabricated nanofibers were calcined at 873 K in Ar atmospheric environment for 5 hours to remove the solvent and polymer. The morphology and diameter of nanofibers were measured by optical microscopy (OM) with Motic image plus 2.0 program. The components and chemical environment were investigated with X-ray photoelectron spectroscopy (XPS). From the XPS survey spectra, we confirmed that CuSn/PVP nanofibers were successfully fabricated. The XPS peaks of C 1s and N 1s were remarkably decreased after calcination of the nanofibers at 873 K. It implies that the PVP was completely decomposed after calcination at 873 K.

Keywords

References

  1. A. J. Huh and Y. J. Kwon, "Nanoantibiotics: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era", J. Control. Release, Vol. 156, pp. 128-145, 2011. https://doi.org/10.1016/j.jconrel.2011.07.002
  2. R. P. Allaker and G. Ren, "Potential impact of nanotechnology on the control of infectious diseases", Trans. R. Soc. Trop. Med. Hyg., Vol. 102, pp. 1-2, 2008. https://doi.org/10.1016/j.trstmh.2007.07.003
  3. L. Zhang, F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer, and O. C. Farokhzad, "Nanoparticles in medicine: therapeutic applications and developments", Clin. Pharmacol. Ther., Vol. 83, pp. 761- 769, 2008. https://doi.org/10.1038/sj.clpt.6100400
  4. B. Bagchi, S. Dey, S. Bhandary, S. Das, A. Bhattacharya, R. Basu, and P. Nandy, "Antimicrobial efficacy and biocompatibility study of copper nanoparticle adsorbed mullite aggregates", Mater. Sci. Eng. C., Vol. 32, pp. 1897-1905, 2012. https://doi.org/10.1016/j.msec.2012.05.011
  5. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, "Ultra high strength and high electrical conductivity in copper", Science, Vol. 304, pp. 422-426, 2004. https://doi.org/10.1126/science.1092905
  6. G. Sun, F. Qi, Y. Li, N. Wu, J. Cao, S. Zhang, X. Wang, G. Yi, H. Bala, and Z. Zhang, "Solvothermal synthesis and characterization of ultrathin SnO nanosheets", Mater. Lett., Vol. 118, pp. 69-71, 2014. https://doi.org/10.1016/j.matlet.2013.12.048
  7. J. Wang, C. Lu, X. Liu, Y. Wang, Z. Zhu, and D. Meng, "Synthesis of tin oxide (SnO & $SnO_2$) micro/ nanostructures with novel distribution characteristic and superior photocatalytic performance", Mater. Des., Vol. 115, pp. 103-111, 2017. https://doi.org/10.1016/j.matdes.2016.11.043
  8. D. Li and Y. Xia, "Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning", Nano Lett., Vol. 4, pp. 933-938, 2004. https://doi.org/10.1021/nl049590f
  9. Y. Ding, Q. Wu, D. Zhao, W. Ye, M. Hanif, and H. Hou, "Flexible $PI/BaTiO_3$ dielectric nanocomposite fabricated by combining electrospinning and electrospraying", Eur. Polym. J., Vol. 49, pp. 2567- 2571, 2013. https://doi.org/10.1016/j.eurpolymj.2013.05.016
  10. L. V. Schueren, B. D. Schoenmaker, O. I. Kalaoglu, and K. D. Clerck, "An alternative solvent system for the steady state electrospinning of polycaprolactone", Eur. Polym. J., Vol. 47, pp. 1256-1263, 2011. https://doi.org/10.1016/j.eurpolymj.2011.02.025
  11. S. Lingaiah and K. Shivakumar, "Electrospun high temperature polyimide nanopaper", Eur. Polym. J., Vol. 49, pp. 2101-2108, 2011.
  12. D. Li, J. T. McCann, Y. Xia, and M. Marquez, "Electrospinning: A simple and Versatile technique for Producing ceramic Nanofibers and Nanotubes", J. Am. Ceram. Soc., Vol. 89, pp. 1861-1869, 2006. https://doi.org/10.1111/j.1551-2916.2006.00989.x
  13. F. Meng, Y. Zhan, Y. Lei, R. Zhao, M. Xu, and X. Liu, "Rose thorns-like polymer micro/nanofibers via electrospinning and controlled temperature-induced self-assembly", Eur. Polym. J., Vol. 47, pp. 1563- 1568, 2011. https://doi.org/10.1016/j.eurpolymj.2011.05.007
  14. K.-C. Hsu, J.-D. Liao, J.-R. Yang, and Y.-S. Fu, "Cellulose acetate assisted synthesis and characterization of kesterite quaternary semiconductor $Cu_2ZnSnS_4$ mesoporous fibers by an electrospinning process", CrystEngComm, Vol. 15, pp. 4303- 4308, 2013. https://doi.org/10.1039/c3ce00052d
  15. Z. Khan, F. Kafiah, H. Z. Shafi, F. Nufaiei, S. A. Furquan, and A. Matin, "Morphology, mechanical properties and surface characteristics of electrospun polyacrylonitrile (PAN) nanofiber mats", International Journal of Advanced Engineering and Nano Technology, Vol. 2, pp. 15-22, 2015.