References
- Bang, J., & Lee, S. (2015). Adaptive speech emotion recognition framework using prompted labeling technique. KIISE Transaction on Computing Practices, 21(2), 160-165. (방재훈.이승룡 (2015). 프롬프트 레이블링을 이용한 적응형 음성기반 감정인식 프레임워크. 한국정보과학회 컴퓨팅의 실제 논문집, 21(2), 160-165.) https://doi.org/10.5626/KTCP.2015.21.2.160
- Rahman, T., & Busso, C. (2012). A personalized emotion recognition system using an unsupervised feature adaptation scheme. Proceedings of International Conference on the Acoustics, Speech and Signal Processing (pp. 5117-5120).
- Kwon, C., Song, S., Kim, J., Kim, K., & Jang, J. (2012). Extraction of speech features for emotion recognition. Phonetics and Speech Sciences, 4(2), 73-78. (권철홍.송승규.김종열.김근호.장준수 (2012). 감정 인식을 위한 음성 특징 도출. 말소리와 음성과학, 4(2), 73-78.) https://doi.org/10.13064/KSSS.2012.4.2.073
- Kim, J., & Kwon, C. (2014). Measuring correlation between mental fatigues and speech features. Phonetics and Speech Sciences, 6(2), 3-8. (김정인.권철홍 (2014). 정신피로와 음성특징과의 상관관계 측정. 말소리와 음성과학, 6(2), 3-8.) https://doi.org/10.13064/KSSS.2014.6.2.003
- Kim, T., & Kwon, C. (2015). Correlation between physical fatigue and speech signals. Phonetics and Speech Sciences, 7(1), 11-17. (김태훈.권철홍 (2015). 육체피로와 음성신호와의 상관관계. 말소리와 음성과학, 7(1), 11-17.) https://doi.org/10.13064/KSSS.2015.7.1.011
- Boersma, P., & Weenink, D. (2016). Praat: doing phonetics by computer [computer program]. Retrieved from http://www.praat.org on December, 2016.
- MDVP: Multi Dimensional Voice Program, KayPentax. Retrieved from http://www.kayelemetrics.com on January, 2017.
- Shue, Y., Keating, P., Vicenik, C., & Yu, K. (2011). VoiceSauce: a program for voice analysis. Proceedings of the 17th International Congress of Phonetic Sciences (pp. 1846-1849). Retrieved from http://www.seas.ucla.edu/spapl/voicesauce/ on January, 2017.
- Han, S., Kim, S., Kim, J., & Kwon, C. (2011). A preliminary study on correlation between voice characteristics and speech features. Phonetics and Speech Sciences, 3(4), 85-91. (한성만.김상범.김종열.권철홍 (2011). 목소리 특성의 주관적 평가와 음성 특징과의 상관관계 기초연구. 말소리와 음성과학, 3(4), 85-91.)
- Song, J. (2015). SPSS/AMOS statistical analysis method required for preparation of thesis. Seoul: 21segisa. (송지준 (2015). 논문작성에 필요한 SPSS/AMOS 통계분석방법. 서울: 21 세기사.)
- IBM SPSS statistics, IBM Korea. Retrieved from http://www-01.ibm.com/software/kr/analytics/spss/ on January, 2017.
- Chang, C., & Lin, C. (2011). LIBSVM: a library for support vector machines. ACM Transaction on Intelligent Systems and Technology, 2(3), 1-27. Retrieved from http://www.csie.ntu.edu.tw/-cjlin/libsvm/ on January, 2017.
- Kim, T., & Kwon, C. (2016). An SVM-based physical fatigue diagnostic model speech features. Phonetics and Speech Sciences, 8(2), 17-22. (김태훈.권철홍 (2016). 음성 특징 파라미터를 이용한 SVM 기반 육체피로도 진단모델. 말소리와 음성과학, 8(2), 17-22.) https://doi.org/10.13064/KSSS.2016.8.2.017
- Alippi, C., Roveri, M. (2010). Virtual k-fold cross validation: An effective method for accuracy assessment. The 2010 International Joint Conference on Neural Networks (IJCNN), 18-23.
- Ferrand, C. (2002). Harmonics-to-Noise Ratio: an index of vocal aging. Journal of Voice, 16(4), 480-487. https://doi.org/10.1016/S0892-1997(02)00123-6
- Boersma, P. (1993). Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise ratio of a sampled sound. Proceedings of Institute of Phonetic Sciences, 17, 97-110.
- Hillenbrand, J., & Houde, R. (1996). Acoustic correlates of breathy vocal quality: dysphonic voices and continuous speech. Journal of Speech and Hearing Research, 39, 311-321. https://doi.org/10.1044/jshr.3902.311
- Linville, S. (2002). Source characteristics of aged voice assessed from long-term average spectra. Journal of Voice, 16(4), 472-479. https://doi.org/10.1016/S0892-1997(02)00122-4
- Mendoza, E., Valencia, N., Munöz, J., & Trujillo, H. (1996). Differences in voice quality between men and women: use of the long-term average spectrum (LTAS). Journal of Voice, 10(1), 59-66. https://doi.org/10.1016/S0892-1997(96)80019-1