DOI QR코드

DOI QR Code

Materials Compatibility and Structure Optimization of Test Department Probe for Quality Test of Fingerprint Sensor

지문인식센서 품질평가를 위한 검사부 프로브의 소재 적합성과 구조 최적화 연구

  • Son, Eun-Won (Carbon&Light Materials Application Group, Korea Institute of Industrial Technology) ;
  • Youn, Ji Won (Carbon&Light Materials Application Group, Korea Institute of Industrial Technology) ;
  • Kim, Dae Up (Carbon&Light Materials Application Group, Korea Institute of Industrial Technology) ;
  • Lim, Jae-Won (Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, Chonbuk National University) ;
  • Kim, Kwang-Seok (Carbon&Light Materials Application Group, Korea Institute of Industrial Technology)
  • 손은원 (한국생산기술연구원 탄소경량소재응용그룹) ;
  • 윤지원 (한국생산기술연구원 탄소경량소재응용그룹) ;
  • 김대업 (한국생산기술연구원 탄소경량소재응용그룹) ;
  • 임재원 (전북대학교 신소재공학부) ;
  • 김광석 (한국생산기술연구원 탄소경량소재응용그룹)
  • Received : 2017.12.08
  • Accepted : 2017.12.29
  • Published : 2017.12.31

Abstract

Recently, fingerprint sensors have widely used for personal information security, and require quality evaluation to reduce an error of their recognition rate. Quality of fingerprint sensors is evaluated by variation of their electrical resistance introducing by contacts between a probe tip and a sensor electrode, Investigation on the materials compatability and structure optimization of probe is required to reduce deformation of sensor electrode for repeatability of quality testing. Nickel, steel(SK4), beryllium copper, and phosphor bronze were considered as probe materials, and beryllium copper was the most appropriate for materials of probe tips, considering indentation and contact resistance while being contacted probe tips on electrodes. Probes of an inspection part were manufactured with the single-unit structure for physical damage prevention and parallel processing capability. Inspection repeatability was evaluated by voltage variation of fingerprint sensors when the specific current was applied. A single-unit inspection part with beryllium copper probe tips showed excellent repeatability within ${\pm}0.003V$ of its voltage variation.

최근 정보 보호가 이슈화됨에 따라 지문인식센서의 활용이 점차 증가하고 있으며, 센서 인식률 오차를 최소화 할 수 있는 품질평가를 요구한다. 지문인식센서 전극과 검사부 프로브 팁이 접촉 시 발생하는 저항 값의 변화에 의해 센서의 품질이 평가되며, 품질평가의 재현성을 확보하기 위해서는 센서 전극의 변형 유발을 최소화할 수 있는 프로브 소재의 적합성과 구조 최적화 연구가 필요하다. 프로브 팁의 적합성 평가를 위한 소재로 니켈(Ni), 스틸(SK4), 베릴륨동(Beryllium copper), 인청동(Phosphor bronze)을 비교하였으며, 프로브 팁 접촉 후 전극의 압흔 크기와 접촉저항을 고려할 때 베릴륨동이 프로브 소재로 적합하다. 검사부 프로브는 지문인식센서 전극의 물리적 손상 방지와 다수의 지문인식센서 동시 검사가 가능한 구조를 위해 일체형 프로브 방식으로 제작하였다. 검사부의 재현성은 특정 전류 값을 인가하여 지문인식센서의 전압 변화로 판단하였으며, 베릴륨동 프로브 소재와 일체형 구조를 통해 센서 전극에 프로브가 300회 접촉하는 동안 센서의 전압 변화는 ${\pm}0.003V$ 이내의 우수한 재현성을 확인하였다.

Keywords

References

  1. J. S. Lee, J. H. Kim, J. S. Chae, and B. S. Lee, "A Detection Method of Fake Fingerprint in Optical Fingerprint Sensor", Jounal of korea multimedia society, 11(4), 492 (2008).
  2. Y. E. Jeon, Y. J. Lee, M. K. Jang, B. M. Seo, I. H. Kang, M. T. Hong, J. M. Lee, E. Jacques, T. Mohammed-Brahim, and B. S. Bae, "Capacitive sensor array for fingerprint recognition", Proc. 10th International Conference on Sensing Technology (ICST), China, 1, IEEE (2016).
  3. K. S. Kim, and D. U. Kim, "Overview on Smart Sensor Technology for Biometrics in IoT Era", J. Microelectron. Packag. Soc., 23(2), 29 (2016). https://doi.org/10.6117/kmeps.2016.23.2.029
  4. M. Lokie, "Biometric Technology", Heinemann, 1, England (2002).
  5. D. Maltoni, D. Maio, A. Jain, and S. Prabhakar, "Fingerprint Sensing", Handbook of Fingerprint Recognition, Springer Verlag, 1, pp.57-60, Germany (2003).
  6. A. Jain, L. Hong, and R. Bolle, "On-line fingerprint verification", IEEE Trans. Pattern Analysis and Machine Intelligence, 19(4), 302 (1997). https://doi.org/10.1109/34.587996
  7. G. B. Shin, K. H. Jung, D. W. Kang, and K. D. Kim, "A Study on Implementation of Finger-Print Identification System Using Optical Sensor", Proc. Korean Society of Broadcast Engineers Conference, The Korean Institute of Broadcast and Media Engineers, 67 (2005).
  8. J. Y. Lee, and C. H. Choi, "Sensitivity Improvement of 3-D Hall Sensor using Anisotropic Etching and Ni/Fe Thin Films", J. Microelectron. Packag. Soc., 8(4), 17 (2001).
  9. Y. S. Ahn, W. H. Kim, H. K. Oh, K. B. Park, K. Y. Kim, and S. H. Choa, "Characteristics of Flexible Transparent Capacitive Pressure Sensor Using Silver Nanowire/PEDOT:PSS Hybrid Film", J. Microelectron. Packag. Soc., 23(3), 21 (2001). https://doi.org/10.6117/kmeps.2016.23.3.021
  10. K. H. Yu, H. S. Lee, and Y. S. Bae, "Sensor Performance Evaluation Analysis of lmitation Fingerprint", Jounal of korea multimedia society, 562 (2007).
  11. S. M. Jung, and M. K. Lee, "High Performance Circuit Design of a Capacitive Type Fingerprint Sensor Signal Processing", Journal of the Institute of Electronics and Information Engineers, 41(3), 109 (2004).
  12. E. B. Yi, S. W. Jun, C. W. Ryu, and H. I. Kim, "Development of a Fingerprint Recognition System for Various Fingerprint Image", Journal of the Institute of Electronics and Information Engineers, 40(6), 10 (2003).
  13. J. M. Nam, and S. M. Jung, "A Circuit Design of Fingerprint Authentication Sensor", J. Korean Inst. Commun. Inf. Sci., 29(4), 4 (2004).
  14. H. S. Shim, J. S. Hong, and S. K. Kim, "Characterization of Probe Pin", Journal of The Korean Society of Manufacturing Technology Engineers, 291 (2014).
  15. Y. R. Oh, Y. J. Kim, H. S. Nam, U. G. Park, H. J. Lee, and J. Y. Kim, "Design of Vertical Type Probe Tip Using Finite Element Analysis", Journal of Mechanical Science and Technology, 36(8), 851 (2012).
  16. G. H. Kim, and D. W. Lee, "Development of Optical Probe to Inspect Micron Scale Part in Micro-Factory", Proc. Journal of the KSMTE, 4491 (1999).
  17. S. R. Maeng, J. H. Jin, J. Buajarern, J. W. Kim, J. A. Kim, and C. S. Kang, "Design and Fabrication of a Step Height Certified Reference Material for Multi-probe Inspection Instruments", Journal of The Korean Society of Manufacturing Technology Engineers, 28(3), 323 (2011).