DOI QR코드

DOI QR Code

Improvement of Photoelectrochemical Properties through Activation Process of p-type GaN

p-type GaN의 Activation을 통한 광전기화학적 특성 향상

  • Bang, Seung Wan (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Kim, Haseong (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Bae, Hyojung (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Ju, Jin-Woo (Photonic ICT & Energy Research Center) ;
  • Kang, Sung-Ju (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Ha, Jun-Seok (Department of Advanced Chemicals & Engineering, Chonnam National University)
  • 방승완 (전남대학교 화학공학부) ;
  • 김하성 (전남대학교 화학공학부) ;
  • 배효정 (전남대학교 화학공학부) ;
  • 주진우 (한국광기술원 광 ICT 에너지 연구센터) ;
  • 강성주 (전남대학교 화학공학부) ;
  • 하준석 (전남대학교 화학공학부)
  • Received : 2017.12.07
  • Accepted : 2017.12.17
  • Published : 2017.12.31

Abstract

The n-type GaN semiconductor has excellent properties as a photoelectrode, but it has disadvantage that its reliability is deteriorated due to the photocorrosion because the oxygen reaction occurs on the surface. For this reason, there are fundamental attempts to avoid photocorrosion reaction of GaN surfaces by using the p-type GaN as a photoelectrode where hydrogen generation reaction occurs on the surface. However, p-type GaN has a problem of low efficiency because of its high resistivity and low hole mobility. In this study, we try to improve the photocurrent efficiency by activation process for the p-type GaN. The p-type GaN was annealed for 1 min. at $500^{\circ}C$ in $N_2$ atmosphere. Hall effect measurement system was used for the electrical properties and potentiostat (PARSTAT4000) was used to measure the photoelectrochemical (PEC) characteristics. Consequently, the photocurrent density was improved more than 1.5 times by improving the activation process for the p-type GaN. Also, its reliability was maintained for 3 hours.

n-type GaN 반도체는 광전극으로서 우수한 성질을 가지고 있지만, 표면에서 일어나는 산소반응으로 인한 광부식으로 신뢰성이 저하되는 큰 단점이 있다. 이를 근본적으로 억제하기 위하여 표면에서 수소 발생 반응이 일어나는 p-type GaN를 광전극으로 사용함으로써 광부식을 피하고자 하는 연구가 진행되고 있다. 하지만 p-type GaN은 비저항이 높고 정공 이동도가 낮기 때문에 효율이 낮다는 단점을 가지고 있다. 본 연구에서는 이러한 문제를 p-type GaN의 activation 공정을 통해 개선하고자 한다. 전극으로 사용될 p-type GaN을 $N_2$ 분위기의 $500^{\circ}C$에서 1 분 동안 annealing을 하였다. Hall effect 측정을 통하여 전기적 특성을 확인하였으며, potentiostat (PARSTAT4000) 측정을 통하여 광전기화학적 (photoelectrochemical, PEC) 특성을 분석하였다. 그 결과 annealing 공정을 통하여 광전류밀도가 1.5배 이상 향상되었으며, 3시간 동안 안정적인 광전류 값을 확인하였다.

Keywords

References

  1. M. G. Walter, E. L. Warren, J. R. McKone, S. W.Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, "Solar Water Splitting Cells", Chem. Rev., 110(11), 6446 (2010). https://doi.org/10.1021/cr1002326
  2. S. Fan, B. AlOtaibi, S. Y. Woo, Y. Wang, G. A. Botton, and Z. Mi, "High efficiency solar-to-hydrogen conversion on a monolithically integrated InGaN/GaN/Si adaptive tunnel junction photocathode", Nano. Lett., 15(4), 2721 (2015). https://doi.org/10.1021/acs.nanolett.5b00535
  3. M. Pourbaix, "Atlas of Electrochemical Equilbria in Aqueous Solutions", 2nd ed., pp.97, National Association of Corrosion Engineers, Houston (1974).
  4. J. H. Edgar, "Properties of Group III Nitrides (Electronic Materials Information Service (EMIS) Datareviews Series)", 11, pp.3, IEE, London (1994).
  5. J.-W. Yoon, J.-H. Bang, Y.-H. Ko, S.-H. Yoo, J.-K. Kim, and C.-W Lee, "Power Module Packaging Technology with Extended Reliability for Electric Vehicle Applications", J. Microelectron. Packag. Soc., 21(4), 1 (2014). https://doi.org/10.6117/kmeps.2014.21.4.001
  6. H. S. Kim, H. J. Bae, S.-J. Kang, and J.-S. Ha, "$MnO_2$ cocatalyst effect on Photoelectrochemical Properties of GaN Photoelectrode", J. Microelectron. Packag. Soc., 23(4), 113 (2016). https://doi.org/10.6117/kmeps.2016.23.4.113
  7. S. Strite, and H. Morkoc, "GaN, AlN, and InN: A review", J. Vac. Sci. Technol. B., 10(4), 1237 (1992). https://doi.org/10.1116/1.585897
  8. I. Akasaki, H. Amano, H. Murakami, M. Sassa, H. Kato, and K. Manabe, "Growth of GaN and AlGaN for UV blue p-n junction diodes", J. Crystal Growth., 128, 379 (1993). https://doi.org/10.1016/0022-0248(93)90352-W
  9. I. Akasaki, and H. Amano, "Widegap Column-III Nitride Semiconductors for UV/Blue Light Emitting Devices", J. Electrochem. Soc., 141(8), 2266 (1994). https://doi.org/10.1149/1.2055104
  10. R. D. Dupuis, "Epitaxial growth of III-V nitride semiconductors by MOCVD", J. Crystal Growth., 178, 56 (1997). https://doi.org/10.1016/S0022-0248(97)00079-1
  11. S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto, and T. Ishihara, "Preparation of p-Type $CaFe_2O_4$ Photocathodes for Producing Hydrogen from Water", J. Am. Chem. Soc., 132, 17343 (2010). https://doi.org/10.1021/ja106930f
  12. K. Fujii, and K. Ohkawa, "Photoelectrochemical properties of p-type GaN in comparison with n-type GaN", Jpn. J. Appl. Phys., 44(2), L909 (2005). https://doi.org/10.1143/JJAP.44.L909
  13. K. Fujii, T. Karasawa and K. Ohkawa, "Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation", Jpn. J. Appl. Phys., 44, L543 (2005). https://doi.org/10.1143/JJAP.44.L543
  14. K. Sato, K. Fujii, K. Koike, T. Goto, and T. Yao, "Anomalous time variation of photocurrent in GaN during photoelectrochemical reaction for H2 gas generation in NaOH aqueous solution", Phys. Status. Solidi. C., 6(2), S635 (2009). https://doi.org/10.1002/pssc.200880814
  15. K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, "Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells", Appl. Phys. Lett., 96, 052110 (2010). https://doi.org/10.1063/1.3304786
  16. D. H. Youn, M. Lachab, M. Hao, T. Sugahara, H. Takenaka, Y. Naoi, and S. Sakai, "Investigation on the p-type activation mechanism in Mg-doped GaN films grown by metalorganic chemical vapor deposition", Jpn. J. Appl. Phys., 38, 631 (1999). https://doi.org/10.1143/JJAP.38.631
  17. C. H. Kuo, S.J. Chang, Y.K. Su, L.W. Wu, J.K. Sheu, C.H. Chen, G.C. Chi, "Low Temperature Activation of Mg-Doped GaN in $O_2$ Ambient", J. Appl. Phys., 41(2), p. L112(2002). https://doi.org/10.1143/JJAP.41.L112
  18. J. D. Hwang, and G. H. Yang, "Activation of Mg-doped P-GaN by using two-step annealing", Appl. Surf. Sci., 253, 4694 (2007). https://doi.org/10.1016/j.apsusc.2006.10.026
  19. I. Waki, H. Fuhioka, M. Oshima, H. Miki, M. Okuyama, "Mechanism for low temperature activation of Mg-doped GaN with Ni catalysts", J. Appl. Phys., 90, 6500 (2001). https://doi.org/10.1063/1.1417999
  20. S. J. Peaton, J. W. Lee, and C. Yuan, "Minority-carrier-enhanced reactivation of hydrogen?passivated Mg in GaN", Appl. Phys. Lett., 68, 2690 (1996). https://doi.org/10.1063/1.116310
  21. M. Miyachi, T. Tanaka, Y. Kimura, and H. Ota, "The activation of Mg in GaN by annealing with minority-carrier injection", Appl. Phys. Lett., 72, 1101 (1998). https://doi.org/10.1063/1.120936
  22. D. J. Kim, H. M. Kim, M. G. Han, Y. T. Moon, S. Lee, and S. J. Park, "Activation of Mg acceptor in GaN: Mg with pulsed KrF (248 nm) excimer laser irradiation", Phys. Stat. Sol. (b)., 228, 375 (2001). https://doi.org/10.1002/1521-3951(200111)228:2<375::AID-PSSB375>3.0.CO;2-A
  23. Y. J. Lin, W. F. Liu, and C. T. Lee, "Excimer-laser-induced activation of Mg-doped GaN layers", Appl. Phys. Lett., 84, 2515 (2004). https://doi.org/10.1063/1.1695436
  24. X. C. Wang, G. C. Lim, W. Liu, C. B. Soh, and S. J. Chua, "SIMTech Technical Reports", 6, 6 (2005).
  25. S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, "Thermal annealing effects on p-type Mg-doped GaN films", Jpn. J. Appl. Phys., 31(2), L139 (1992). https://doi.org/10.1143/JJAP.31.L139
  26. D. H. Youn, M. Lachab, M. Hao, T. Sugahara, H. Takenaka, Y. Naoi, and S. Sakai, "Investigation on the p-type activation mechanism in Mg-doped GaN films grown by metalorganic chemical vapor deposition", Jpn. J. Appl. Phys., 38, 631 (1999). https://doi.org/10.1143/JJAP.38.631

Cited by

  1. Carbon Nanotube Passivation layer for Increasing the Solar Water Splitting Performance of CdS/CuInGaSe Photocathode vol.26, pp.4, 2019, https://doi.org/10.6117/kmeps.2019.26.4.107
  2. Rapid Fabrication of Cu/Cu2O/CuO Photoelectrodes by Rapid Thermal Annealing Technique for Efficient Water Splitting Application vol.27, pp.4, 2017, https://doi.org/10.6117/kmeps.2020.27.4.039
  3. 전기화학적 정전위 활성화를 사용한 수소 제거에 의한 AlGaN기반의 UV-C 발광 다이오드의 p-형 활성화 vol.28, pp.4, 2017, https://doi.org/10.6117/kmeps.2021.28.4.085