DOI QR코드

DOI QR Code

Fabrication of Vertically Oriented ZnO Micro-crystals array embedded in Polymeric matrix for Flexible Device

수열합성을 이용한 ZnO 마이크로 구조의 성장 및 전사

  • Yang, Dong Won (Division of Materials Science and Engineering, Hanyang University) ;
  • Lee, Won Woo (Division of Materials Science and Engineering, Hanyang University) ;
  • Park, Won IL (Division of Materials Science and Engineering, Hanyang University)
  • 양동원 (한양대학교 신소재공학과) ;
  • 이원우 (한양대학교 신소재공학과) ;
  • 박원일 (한양대학교 신소재공학과)
  • Received : 2017.11.01
  • Accepted : 2017.12.12
  • Published : 2017.12.31

Abstract

Recently, there has been substantial interest in flexible and wearable devices whose properties and performances are close to conventional devices on hard substrates. Despite the advancement on flexible devices with organic semiconductors or carbon nanotube films, their performances are limited by the carrier scattering at the molecular to molecular or nanotube-to-nanotube junctions. Here in this study, we demonstrate on the vertical semiconductor crystal array embedded in flexible polymer matrix. Such structures can relieve the strain effectively, thereby accommodating large flexural deformation. To achieve such structure, we first established a low-temperature solution-phase synthesis of single crystalline 3D architectures consisting of epitaxially grown ZnO constituent crystals by position and growth direction controlled growth strategy. The ZnO vertical crystal array was integrated into a piece of polydimethylsiloxane (PDMS) substrate, which was then mechanically detached from the hard substrate to achieve the freestanding ZnO-polymer composite. In addition, the characteristics of transferred ZnO were confirmed by additional structural and photoluminescent measurements. The ZnO vertical crystal array embedded in PDMS was further employed as pressure sensor that exhibited an active response to the external pressure, by piezoelectric effect of ZnO crystal.

최근, 유연하며 몸에 부착 가능한 소자들에 대한 관심이 늘어나고 있다. 이런 관심을 뒷받침 하여 이와 관련된 다양한 연구들이 진행되고 있는데, 기존 딱딱한 성질을 가진 소자에 사용되던 무기물 기반의 재료의 경우 유연 소자로 만들기에 여러 가지 제약이 있어 유연하게 제작할 수 있는 유기물 반도체나 탄소 나노튜브 필름 등을 이용한 소자들이 주로 연구되고 개발되어 왔다. 하지만 이런 재료들을 이용한 소자의 경우 유기물 분자와 분자 사이 또는 탄소 나노튜브와 나노튜브 사이에서 전하들이 산란되는 등 재료 자체의 한계로 인해 기존의 재료를 사용한 소자들보다 전기적 성능이 떨어지는 단점을 가지고 있다. 이런 단점들을 해결하기 위하여 이 연구에서는 수직 정렬된 반도체 결정 어레이를 투명 유연한 폴리머와 결합하는 방법을 이용, 고품질 나노/마이크로 반도체 결정을 유연한 기판으로 전사 시킬 수 있는 방법을 제시한다. 위와 같은 구조는 재료에 가해지는 힘을 완화 시켜줄 수 있으며, 이로 인해 큰 변형에도 재료의 손상이 없는 소자 제작이 가능하다. 이런 구조를 구현하기 위해 위치 및 크기가 정교하게 제어된 ZnO 나노막대 단결정을 저온에서 용액공정을 통하여 합성시킨다. 이후 성장시킨 ZnO 단결정 어레이와 polydimethylsiloxane (PDMS) 폴리머를 결합시킨 후 단단한 기판에서 기계적으로 박리시켜 ZnO/폴리머 복합체를 분리해 낸다. 추가적으로 전사된 ZnO의 결정성을 확인하기 위하여 photoluminescent 분석을 진행하였으며, ZnO/폴리머 복합체를 이용한 외부 힘에 반응하는 압력 센서를 제작하였다.

Keywords

References

  1. Y. J. Ma, M. Pharr, L. Wang, J. Kim, Y. H. Liu, Y. G. Xue, R. Ning, X. F. Wang, H. U. Chung, X. Feng, J. A. Rogers, and Y. Huang, "Soft Elastomers with Ionic Liquid-Filled Cavities as Strain Isolating Substrates for Wearable Electronics", Small, 13(9) (2017).
  2. A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M. C. Manco, L. Wang, K. R. Ammann, K. I. Jang, P. Won, S. Han, R. Ghaffari, U. Paik, M. J. Slepian, G. Balooch, Y. G. Huang, and J. A. Rogers, "A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat", Sci. Transl. Med., 8 (366) (2016).
  3. J. A. Rogers, "WEARABLE ELECTRONICS Nanomesh onskin electronics", Nat. Nanotechnol., 12(9), 839 (2017). https://doi.org/10.1038/nnano.2017.150
  4. X. F. Wang, Y. J. Ma, Y. G. Xue, H. W. Luan, M. Pharr, X. Feng, J. A. Rogers, and Y. G. Huang, "Collapse of liquidoverfilled strain-isolation substrates in wearable electronics", Int. J. Solids. Struct., 117, 137 (2017). https://doi.org/10.1016/j.ijsolstr.2017.03.031
  5. X. Jin, C. S. Jiang, E. M. Song, H. Fang, J. A. Rogers, and M. A. Alam, "Stability of MOSFET-Based Electronic Components in Wearable and Implantable Systems", IEEE T. Electron. Dev., 64(8), 3443 (2017). https://doi.org/10.1109/TED.2017.2715837
  6. J. Kim, P. Gutruf, A. M. Chiarelli, S. Y. Heo, K. Cho, Z. Q. Xie, A. Banks, S. Han, K. I. Jang, J. W. Lee, K. T. Lee, X. Feng, Y. G. Huang, M. Fabiani, G. Gratton, U. Paik, and J. A. Rogers, "Miniaturized Battery-Free Wireless Systems for Wearable Pulse Oximetry", Adv. Funct. Mater., 27(1) (2017).
  7. Y. P. Zang, F. J. Zhang, D. Z. Huang, X. K. Gao, C. A. Di, and D. B. Zhu, "Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection", Nature Communications, 6 (2015).
  8. S. K. Gupta, P. Jha, A. Singh, M. M. Chehimi, and D. K. Aswal, "Flexible organic semiconductor thin films", J. Mater. Chem. C., 3(33), 8468 (2015). https://doi.org/10.1039/C5TC00901D
  9. T. Sasaki, M. Sakai, T. Ko, Y. Okada, H. Yamauchi, K. Kudo, Y. Sadamitsu, and S. Shinamura, "Solvent-Free Printing of Flexible Organic Thin Film Transistors by Ultrasonic Welding", Adv. Electron. Mater., 2(3) (2016).
  10. S. J. Kim, M. Jang, H. Y. Yang, J. Cho, H. S. Lim, H. Yang, and J. A. Lim, "Instantaneous Pulsed-Light Cross-Linking of a Polymer Gate Dielectric for Flexible Organic Thin-Film Transistors", Acs. Appl. Mater. Inter., 9(13), 11721 (2017). https://doi.org/10.1021/acsami.6b14957
  11. B. W. Zhu, Z. Q. Niu, H. Wang, W. R. Leow, H. Wang, Y. G. Li, L. Y. Zheng, J. Wei, F. W. Huo, and X. D. Chen, "Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors", Small, 10(18), 3625 (2014). https://doi.org/10.1002/smll.201401207
  12. Y. G. Sun, and J. A. Rogers, "Inorganic semiconductors for flexible electronics", Adv. Mater., 19(15), 1897 (2007). https://doi.org/10.1002/adma.200602223
  13. S. M. Niu, Y. F. Hu, X. N. Wen, Y. S. Zhou, F. Zhang, L. Lin, S. H. Wang, and Z. L. Wang, "Enhanced Performance of Flexible ZnO Nanowire Based Room-Temperature Oxygen Sensors by Piezotronic Effect", Adv. Mater., 25(27), 3701 (2013). https://doi.org/10.1002/adma.201301262
  14. L. D. Li, L. L. Gu, Z. Lou, Z. Y. Fan, and G. Z. Shen, "ZnO Quantum Dot Decorated Zn2SnO4 Nanowire Heterojunction Photodetectors with Drastic Performance Enhancement and Flexible Ultraviolet Image Sensors", Acs. Nano., 11(4), 4067 (2017). https://doi.org/10.1021/acsnano.7b00749
  15. M. Y. Tsai, A. Tarasov, Z. R. Hesabi, H. Taghinejad, P. M. Campbell, C. A. Joiner, A. Adibi, and E. M. Vogel, "Flexible MoS2 Field-Effect Transistors for Gate-Tunable Piezoresistive Strain Sensors", Acs. Appl. Mater. Inter., 7(23), 12850 (2015). https://doi.org/10.1021/acsami.5b02336
  16. S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong, and T. Joo, "Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on $Al_2O_3(0001)$ by metalorganic vapor phase epitaxy", Appl. Phys. Lett., 80(11), 1924 (2002). https://doi.org/10.1063/1.1461051
  17. S. S. Hong, T. Joo, W. I. Park, Y. H. Jun, and G. C. Yi, "Timeresolved photoluminescence of the size-controlled ZnO nanorods", Appl. Phys. Lett., 83(20), 4157 (2003). https://doi.org/10.1063/1.1627472
  18. W. I. Park, G. C. Yi, M. Y. Kim, and S. J. Pennycook, "ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy", Adv. Mater., 14(24), 1841 (2002). https://doi.org/10.1002/adma.200290015
  19. S. H. Jung, E. Oh, K. H. Lee, W. Park, and S. H. Jeong, "A sonochemical method for fabricating aligned ZnO nanorods", Adv. Mater., 19(5), 749 (2007). https://doi.org/10.1002/adma.200601859
  20. Q. Yang, W. H. Wang, S. Xu, and Z. L. Wang, "Enhancing Light Emission of ZnO Microwire-Based Diodes by Piezo-Phototronic Effect", Nano. Lett., 11(9), 4012 (2011). https://doi.org/10.1021/nl202619d
  21. Q. Yang, X. Guo, W. H. Wang, Y. Zhang, S. Xu, D. H. Lien, and Z. L. Wang, "Enhancing Sensitivity of a Single ZnO Micro-/Nanowire Photodetector by Piezo-phototronic Effect", Acs. Nano., 4(10), 6285 (2010). https://doi.org/10.1021/nn1022878
  22. G. A. Zhu, R. S. Yang, S. H. Wang, and Z. L. Wang, "Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array", Nano. Lett., 10(8), 3151 (2010). https://doi.org/10.1021/nl101973h
  23. M. X. Chen, C. F. Pan, T. P. Zhang, X. Y. Li, R. R. Liang, and Z. L. Wang, "Tuning Light Emission of a Pressure-Sensitive Silicon/ZnO Nanowires Heterostructure Matrix through Piezo-phototronic Effects", Acs. Nano., 10(6), 6074 (2016). https://doi.org/10.1021/acsnano.6b01666
  24. R. R. Bao, C. F. Wang, L. Dong, R. M. Yu, K. Zhao, Z. L. Wang, and C. F. Pan, "Flexible and Controllable Piezo-Phototronic Pressure Mapping Sensor Matrix by ZnO NW/p-Polymer LED Array", Adv. Funct. Mater., 25(19), 2884 (2015). https://doi.org/10.1002/adfm.201500801
  25. H. J. Cho, S. J. Kim, S. J. Choi, J. S. Jang, and I. D. Kim, "Facile synthetic method of catalyst-loaded ZnO nanofibers composite sensor arrays using bio-inspired protein cages for pattern recognition of exhaled breath", Sensor. Actuat. B-Chem., 243, 166 (2017). https://doi.org/10.1016/j.snb.2016.11.137
  26. J. Y. Park, D. E. Song, and S. S. Kim, "An approach to fabricating chemical sensors based on ZnO nanorod arrays", Nanotechnology, 19(10) (2008).
  27. H. Zhang, Y. F. Hu, Z. P. Wang, Z. Y. Fang, and L. M. Peng, "Performance Boosting of Flexible ZnO UV Sensors with Rational Designed Absorbing Antireflection Layer and Humectant Encapsulation", Acs. Appl. Mater. Inter., 8(1), 381 (2016). https://doi.org/10.1021/acsami.5b09093
  28. M. Thepnurat, T. Chairuangsri, N. Hongsith, P. Ruankham, and S. Choopun, "Realization of Interlinked ZnO Tetrapod Networks for UV Sensor and Room-Temperature Gas Sensor", Acs. Appl. Mater. Inter., 7(43), 24177 (2015). https://doi.org/10.1021/acsami.5b07491
  29. C. F. Wang, R. R. Ba, K. Zhao, T. P. Zhang, L. Dong, and C. F. Pan, "Enhanced emission intensity of vertical aligned flexible ZnO nanowire/p-polymer hybridized LED array by piezo-phototronic effect", Nano Energy, 14, 364 (2015). https://doi.org/10.1016/j.nanoen.2014.11.033
  30. S. Maiti, U. N. Maiti, and K. K. Chattopadhyay, "Three dimensional ZnO nanostructures realized through a polymer mediated aqueous chemical route: candidate for transparent flexible electronics", Crystengcomm, 14(23), 8244 (2012). https://doi.org/10.1039/c2ce25601k
  31. D. -H. Mun, and J. -S. Ha, "The Effect of Precursor Concentration on ZnO Nanorod Grown by Low-temperature Aqueous Solution Method", J. Microelectron. Packag. Soc., 20(1), 33 (2013). https://doi.org/10.6117/kmeps.2013.20.1.033
  32. J. Jang, T. -S Oh, and J.- S Ha, "Three dimensional ZnO nanostructures realized through a polymer mediated aqueous chemical route: candidate for transparent flexible electronics", J. Microelectron. Packag. Soc., 21(4), 45 (2014) https://doi.org/10.6117/kmeps.2014.21.4.045
  33. J. M. Lee, Y. S. No, S. Kim, H. G. Park, and W. I. Park, "Strong interactive growth behaviours in solution-phase synthesis of three-dimensional metal oxide nanostructures", Nature Communications, 6 (2015).
  34. D. W. Yang, D. Yoo, W. W. Lee, J. M. Lee, G. C. Yi, and W. I. Park, "Three-dimensionally-architectured GaN light emitting crystals", Crystengcomm, 19(15), 2007 (2017). https://doi.org/10.1039/C7CE00057J
  35. W. W. Lee, J. Yi, S. B. Kim, Y. H. Kim, H. G. Park, and W. I. Park, "Morphology-Controlled Three-Dimensional Nanoarchitectures Produced by Exploiting Vertical and In-Plane Crystallographic Orientations in Hydrothermal ZnO Crystals", Cryst. Growth. Des., 11(11), 4927 (2011). https://doi.org/10.1021/cg200806a
  36. W. W. Lee, S. Chang, D. W. Yang, J. M. Lee, H. G. Park, and W. I. Park, "Three-dimensional epitaxy of single crystalline semiconductors by polarity-selective multistage growth", Crystengcomm, 18(42), 8262 (2016). https://doi.org/10.1039/C6CE01897A
  37. W. W. Lee, S. B. Kim, J. Yi, W. T. Nichols, and W. I. Park, "Surface Polarity-Dependent Cathodoluminescence in Hydrothermally Grown ZnO Hexagonal Rods", J. Phys. Chem. C., 116(1), 456 (2012). https://doi.org/10.1021/jp209834d