DOI QR코드

DOI QR Code

Aluminum Brazing and Its Principle

알루미늄의 브레이징과 원리

  • Lee, Soon-Jae (Department of Materials Science and Engineering, University of Seoul) ;
  • Jung, Do-Hyun (Department of Materials Science and Engineering, University of Seoul) ;
  • Jung, Jae-Pil (Department of Materials Science and Engineering, University of Seoul)
  • 이순재 (서울시립대학교 신소재공학과) ;
  • 정도현 (서울시립대학교 신소재공학과) ;
  • 정재필 (서울시립대학교 신소재공학과)
  • Received : 2017.11.01
  • Accepted : 2017.11.21
  • Published : 2017.12.31

Abstract

Aluminum alloys have been widely used in many fields such as electronic, structure, aero-space and vehicle industries due to their outstanding thermal and electrical conductivity as well as low cost. However, they have some difficulties for using in brazing process because of the strong oxide layer of $Al_2O_3$ on the surface of Al alloy. In addition, their melting point is similar to that of brazing filler metal resulting in thermal damage of Al alloys. Therefore, it is very important to understand the brazing principles, filler metal and its properties such as wetting, capillary flow and dissolution of base metal in the Al brazing process. This paper reviews the brazing principles, aluminum alloys, and brazing fillers. In the case of brazing principle, some formula was used for calculation of capillary force and the dissolution to obtain the best condition of Al brazing. In addition, the advanced research trends in Al brazing were introduced including thermal treatment, additive for improving property and decreasing melting point in Al brazing process.

Keywords

References

  1. A. Sharma, and J. P. Jung, "Aluminium Based Brazing Fillers for High Temperature Electronic Packaging Applications", J. Microelectron. Packag. Soc., 22(4), 1 (2015). https://doi.org/10.6117/kmeps.2015.22.4.001
  2. A. Mathieu, S. Pontevicci, J. Viala, E. Cicala, S. Mattei, and D. Grevey, "Laser brazing of a steel/aluminium assembly with hot filler wire (88%Al, 12%Si)", Materials science & engineering: A, 435-436, 19 (2006). https://doi.org/10.1016/j.msea.2006.07.099
  3. J. H. Lee, T. J. Yoon, K. H. Lee, S. Y. Kwak, and C. Y. Kang, "Microstructure and mechanical property of joint of Al-Steel laser brazing using Cu filler metal", The Korean Welding & Joining Society., 174 (2016).
  4. R. J. Klein, "Soldering in electronics", 2nd Ed., (1989).
  5. R. W. Messler. Jr, "Joining of advanced materials", Butterworth - Heinemann, 3-16 (1993).
  6. P. T. Viance, "Soldering handbook", American Welding Society, 3rd Ed., (1999).
  7. J. E. Hatch, "Aluminum:properties and physical metallurgy", American society for metals, 1 (1999).
  8. X. Song, H. Li, and X. Zeng, "Brazing of C/C composites to Ti6Al4V using multiwall carbon nanotubes reinforced TiCuZrNi brazing alloy", J. Alloys and Compounds, 664, 175 (2016). https://doi.org/10.1016/j.jallcom.2015.12.242
  9. X. Song, H. Li, X. Zeng, and L. Zhang, "Brazing of C/C composites to Ti6Al4V using grapheme nanoplates reinforced TiCuZrNi brazing alloy", Materials Letters, 183, 232 (2016). https://doi.org/10.1016/j.matlet.2016.07.111
  10. Z. Wang, G. Wang, M. Li, J. Lin, Q. Ma, A. Zhang, Z. Zhong, J. Qi, and J. Feng, "Three-dimensional graphene-reinforced cu foam interlayer for brazing C/C composites and Nb", Carbon, 118, 723 (2017). https://doi.org/10.1016/j.carbon.2017.03.099
  11. C. S. Kang, and J. P. Jung, "Micro joining", Samsung-Books, pp.22-23 (2002).
  12. M. H. Sloboda, "Design and Strength of Brazed Joints", Johnson Matthey & Co limited, London, pp.3-6 (1961).
  13. A. Shen, Y. Liu, X. Qiu, Y. Lu, and S. Liang, "A model for capillary rise in nano-channels with inherent surface roughness", Appl. Phys. Lett., 110, 121601 (2017). https://doi.org/10.1063/1.4977773
  14. E. W. Washburn, "The dynamics of capillary flow", Phys. Rev., 17(3), 273 (1921). https://doi.org/10.1103/PhysRev.17.273
  15. N. Fries, and M. Dreyer, "The transition from inertial to viscous flow in capillary rise", J. Colloid Interface Sci., 327, 125 (2008). https://doi.org/10.1016/j.jcis.2008.08.018
  16. H. Zhao, S. Elbel, and P. S. Hrnjak, "Capillary Flow of Liquid Metal Occurring in Microchannel Heat Exchanger Fabrication", (2012).
  17. A. C. Hall, F. M. Hosking, and M. Reece, "Visual observations of liquid filler metal flow within braze gap", Science and Technology of Welding and Joining, 9(2), 95 (2002). https://doi.org/10.1179/136217104225017017
  18. S. Chen, L. Li, Y. Chen, and J. Huang, "Joing mechanism of Ti/Al dissimilar alloys during laser welding-brazing process", Journal of Alloys and Compounds, 509, 891 (2011). https://doi.org/10.1016/j.jallcom.2010.09.125
  19. D. Gupta, K. Vieregge, and W. Gust, "Interface diffusion in eutectic Pb-Sb solder", Acta Materilalia, 47, 5 (1998). https://doi.org/10.1016/S1359-6454(98)00348-6
  20. H. T. Lee, and M. H. Chen, "Influence of intermetallic compounds on the adhesive strength of solder joints", Materials Science and Engineering: A, 333, 24 (2002). https://doi.org/10.1016/S0921-5093(01)01820-2
  21. C. Hunt, and D. D. Maio, "A test methodology for copper dissolution in lead-free alloys", IPC APEX EXPO, (2009).
  22. K. Barmak, "Dissolution kinetics of nickel in lead-free Sn0Bi-In-Zn-Sb soldering alloys", Proc. Mater. Re. Soc, Symp., 993, 0993-E03-01 (2007).
  23. H. Nakagawa, C. H. Lee, and T. H. North, "Modeling of base metal dissolution behavior during transient liquid phase brazing", Metallurgical transaction A, 22(2), 543 (1991). https://doi.org/10.1007/BF02656822
  24. D. U. Kim, C. Y. Kang, and W. J. Lee, "The effect of grain boundary on the dissolution of base metal into insert metal during TLP bonding of Ni-Base super alloy", Metals and Materials, 5(5), 377 (1999).
  25. Y. Li, W. Liu, P. He, J. Feng, and D. P. Sekulic, "Dissolution of TiAl alloy during high temperature brazing", Journal of Materials Science, 48(15), 5247 (2013). https://doi.org/10.1007/s10853-013-7315-8
  26. K. Elangovana, and V. Balasubramanianb, "Influences of post-weld heat treatment on tensile properties of friction stirwelded aa6061 aluminum alloy joints", Material Characterization, 59, 1168 (2008). https://doi.org/10.1016/j.matchar.2007.09.006
  27. M. Craig, and G. Jin, "Aluminum brazing -what matter most: fundamentals and case studies", Ipsen Incorporated, Cherry Valley, Illionis USA (2017).
  28. D. M. Jacobson, and H. Giles, "Principles of Brazing II", ASM international, 3rd Ed., pp.1-14 (2005).
  29. S. Z. Lu, and A. Hellawell, "The mechanism of silicon modification in aluminum-silicon alloys:impurity induced twinning", Metallurgical transactions A, 18, 1721 (1987). https://doi.org/10.1007/BF02646204
  30. M. M. Makhlouf, and H. V. Guthy, "The aluminum silicon eutectic reaction: mechanisms and crystallography.", Journal of light metals, 1, 199 (2001). https://doi.org/10.1016/S1471-5317(02)00003-2
  31. D. J. Fray, "Determination of sodium in molten aluminum and aluminum alloys using beta alumina probe", Metallurgical transactions B, 8(1), 153 (1977). https://doi.org/10.1007/BF02656364
  32. A. Knuutinen, K. Nogita, S. D. McDonald, and A. K. Dahle, "Modification of Al-Si alloys with Ba, Ca, Y and Yb", Journal of Light Metals, 1, 229 (2001). https://doi.org/10.1016/S1471-5317(02)00004-4
  33. H. C. Lia, Y. Sun, and G. Sun, "Correlation between mechanical properties and amount of dendritic ${\alpha}$-Al phase in as-cast near eutectic Al-11.6%Si alloys modified with strontium", Materials Science and Engineering: A, 335, 62 (2002). https://doi.org/10.1016/S0921-5093(01)01949-9
  34. K. Nogita, S. D. Mcdonald, and K. A. Dahle, "Eutectic modification of Al-Si alloys with rare earth metals", Materials Transactions, 45, 323 (2004). https://doi.org/10.2320/matertrans.45.323
  35. C. Cui, A. Schulz, L. Achelis, V. Uhlenwinkel, H. Leopold, V. Piwek, Z.Tang, and T. Seefeld, "Development of low-melting-point filler materials for laser beam brazing of aluminum alloys", Mat.-wiss. u. Werkstofftech., 45(8), 717 (2014). https://doi.org/10.1002/mawe.201400308
  36. T. I. Yoo, J. P. Jung, and Y. S. Shin, "Practical brazing technology", Engineering information, Seoul (2005).
  37. A. Tressaud, "Functionalized Inorganic Fluorides", pp.214- 221, John Wiley & Sons Ltd., India (2010).
  38. W. Dai, S. B. Xue, J. Y. Lou, Y. B. Lou, and S. Q. Wang, "Torch brazing 3003 aluminum alloy with Zn-Al filler metal", Transactions of nonferrous metals society of China, 22, 30 (2012). https://doi.org/10.1016/S1003-6326(11)61135-7
  39. K. Allen, "Solving the problems inherent to torch brazing aluminum", Welding Journal, 39 (2009).
  40. D. Claydon, and A. Sugihara, "Brazing aluminum automotive heat exchanger assemblies using a non-corrosive flux process", SAE technical paper, 830021 (1983).
  41. W. E. Cooke, T. E. Wright, and J. A. Hirschfield, "Furnace brazing of aluminum with a non-corrosive flux", SAE technical paper, 780300 (1978).
  42. M. P. Heisler, "Temperature chart for induction and constant heating", Trans. ASME., 69(3), 227 (1947).
  43. V. Rudnev, D. Loveless, R. Cook, and M. Black, "Handbook of induction heating", Manufacturing Engineering and Materials Processing, 61, pp.80-98 (2003).
  44. J. N. Antonevichm, "Fundamentals of ultrasonic soldering", Welding Journal, 55(7), 200 (1976).
  45. M. Ding, P. I. Zhang, Z. Y. Zhang, and S. Yao, "Direct soldering 6061 aluminum alloys with ultrasonic coating", Ultrasonics Sonochemistry, 17, 292 (2010). https://doi.org/10.1016/j.ultsonch.2009.10.007
  46. M. Naka, and K. M. Hafez, "Applying of ultrasonic waves on brazing of alumina to copper using Zn-Al filler alloy", Journal of materials science, 38(16), 3491 (2003). https://doi.org/10.1023/A:1025161120349
  47. J. Yan, Z. Xu, L. Shi, X. Ma, and S. Yang, "Ultrasonic assisted fabrication of particle reinforced bonds joining aluminum metal matrix composites", Materials and Design, 32(1), 343 (2011). https://doi.org/10.1016/j.matdes.2010.06.036