DOI QR코드

DOI QR Code

석탄비산재로 합성한 제올라이트 X에 의한 수중의 Cs 이온 흡착에 반응표면분석법 적용

Application of Response Surface Methodology (RSM) on Adsorption of Cs Ion in Aqueous Solution with Zeolite X Synthesized from Coal Fly Ash

  • 이창한 (부산가톨릭대학교 환경행정학과) ;
  • 이민규 (부경대학교 화학공학과)
  • Lee, Chang-Han (Department of Environmental Adminstration, Catholic University of Pusan) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • 투고 : 2017.04.11
  • 심사 : 2017.05.25
  • 발행 : 2017.12.31

초록

화력발전소에서 발생되는 석탄비산재로부터 합성한 제올라이트 X를 이용한 Cs 흡착의 회분식 실험 및 반응표면분석법(Response Surface Methodology, RSM)을 적용하여 결과를 분석하였다. Cs 흡착 실험에 적용된 회귀 방정식은 반응변수의 함수로 나타낼 수 있었다. 결정계수($r^2$)가 0.9630으로서 이 모델은 높은 상관성을 가졌다. pH > Cs 농도 > 온도와 같은 실험적 요인의 순서로 Cs의 제거효율에 영향을 준다는 것을 통계적인 결과로부터 확인하였다. 흡착속도는 유사 2차 모델에 의해 보다 정확하게 표현되었다. Langmuir 등온선 모델로부터 계산된 최대 흡착용량은 293 K에서 $151.52mg\;g^{-1}$이었다. 또한, Vant Hoff 식에 의해 계산된 열역학 파라미터에 의거하여 흡착반응이 흡열반응이며, 자발적인 과정임을 확인할 수 있었다.

The batch experiments and response surface methodology (RSM) have been applied to the investigation of the Cs adsorption with zeolite X synthesized using coal fly ash generated from the thermal power plant. Regression equation formulated for Cs adsorption was represented as a function of response variables. The model was highly relevant because the decision coefficient ($r^2$) was 0.9630. It was confirmed from the statistical results that the removal efficiency of Cs was affected by the order of experimental factors as pH > Cs concentration > temperature. The adsorption kinetics were more accurately represented by a pseudo second-order model. The maximum adsorption capacity calculated from the Langmuir isotherm model was $151.52mg\;g^{-1}$ at 293 K. Also, according to the thermodynamic parameters calculated from Vant Hoff equation, it could be confirmed that the adsorption reaction was an endothermic reaction and a spontaneous process.

키워드

참고문헌

  1. Yu, W., He, J., Lin, W., Li, Y., Men, W., Wang, F., and Huang, J., "Distribution and Risk Assessment of Radionuclides Released by Fukushima Nuclear Accident at the Northwest Pacific," J. Environ. Radio., 142, 54-61 (2015). https://doi.org/10.1016/j.jenvrad.2015.01.005
  2. Ha, J. C., and Song, Y. J., "An Investigation of Awareness on the Fukushima Nuclear Accident and Radioactive Contamination," J. Rad. Prot. Res., 41(1), 7-14 (2015). https://doi.org/10.14407/jrpr.2016.41.1.007
  3. Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R., and DeMarini, D. M., "Occurrence, Genotoxicity, and Carcinogenicity of Regulated and Emerging Disinfection By-Products in Drinking Water, A Review and Roadmap for Research," Muta. Res., 636, 178-24 (2007). https://doi.org/10.1016/j.mrrev.2007.09.001
  4. Lee, C. H., Park, J. M., and Lee, M. G., "Competitive Adsorption in Binary Solution with Different Mole Ratio of Sr and Cs by Zeolite A : Adsorption Isotherm and Kinetics," J. Environ. Sci. Int., 24(2), 151-162 (2015). https://doi.org/10.5322/JESI.2015.24.2.151
  5. Smiciklas, I., Dimovic, S., and Plecas, I., "Removal of $Cs^{1+}$, $Sr^{2+}$ and $Co^{2+}$ from Aqueous Solutions by Adsorption on Natural Clinoptilolite," Appl. Clay Sci., 35, 139-144 (2007). https://doi.org/10.1016/j.clay.2006.08.004
  6. Lee, K. Y., Park, M. S., Kim, J. M., Oh, M. K., Lee, E. H., Kim, K. W., Chung, D. Y., and Moon, J. K., "Equilibrium, Kinetic and Thermodynamic Study of Cesium Adsorption onto Nanocrystalline Mordenite from High-Salt Solution," Chemosphere, 150, 765-771 (2016). https://doi.org/10.1016/j.chemosphere.2015.11.072
  7. Ma, B., Oh, S., Shin, W. S., and Choi, S. J., "Removol of $Co^{2+}$, $Sr^{2+}$ and $Cs^{+}$ from Aqueous Solution by Phosphate-Modified Montmorillonite (PMM)," Desalination, 276, 336-346 (2011). https://doi.org/10.1016/j.desal.2011.03.072
  8. Cheon, K. H., Choi, J. H., Shin, W. S., and Choi, S. J., "Adsorption Characteristics of Cobalt, Strontium, and Cesium on Natural Soil and Kaolin," J. Environ. Sci. Int., 23(9), 1609-1618 (2014). https://doi.org/10.5322/JESI.2014.23.9.1609
  9. Sinha, P. K., Panicker, P. K., Amalraj, R. V., and Krishnasamy, V., "Treatment of Radioactive Liquid Waste Containing Caesium by Indigenously Available Synthetic Zeolites: A Comparative Study," Waste Manage., 15(2), 149-157 (1995). https://doi.org/10.1016/0956-053X(95)00014-Q
  10. Mimura, H., and Akiba, K., "Adsorption Behavior of Cesium and Strontium on Synthetic Zeolite P," J. Nucl. Sci. Technol., 30(5), 436-443 (1993). https://doi.org/10.1080/18811248.1993.9734500
  11. Remenarova, L., Pipiska, M., Florkova, E., Augustin, J., Rozloznik, M., Hostin, S., and Hornik, M., "Radiocesium Adsorption by Zeolitic Materials Synthesized from Coal Fly Ash," Nova Biotechnologica et Chimica, 13, 57-72 (2014).
  12. El-Dessouky, M. I., El-Naggar, M. R., El-Rahman, K. M. A., and El-Kamash, A. M., "Thermodynamic and Fixed Bed Studies for the Removal of $Cs^{+}$ and $Sr^{2+}$ Ions from Aqueous Solutions Using Fly Ash Based Na A-X Zeolite Blend," Interna. J. Environ. Eng. Sci., 2(1), 117-134 (2011).
  13. Lee, C. H., Park, J. M., and Lee, M. G., "Adsorption Characteristics of Sr(II) and Cs(I) Ions by Zeolite Synthesized from Coal Fly Ash," J. Environ. Sci. Int., 23(12), 1987-1998 (2014). https://doi.org/10.5322/JESI.2014.23.12.1987
  14. Lee, C. H., Kam, S. K., and Lee, M. G., "Removal Characteristics of Sr Ion by Na-A Zeolite Synthesized using Coal Fly Ash Generated from a thermal Power Plant," J. Environ. Sci. Int., 26(3), 363-371 (2017). https://doi.org/10.5322/JESI.2017.26.3.363
  15. Lee, C. H., Kam, S. K., and Lee, M. G., "Adsorption Characteristics of Sr Ions by Coal Fly Ash-Based-Zeolite X using Response Surface Modeling Approach," J. Environ. Sci. Int., 26(6), 719-728 (2017). https://doi.org/10.5322/JESI.2017.26.6.719
  16. Abd El-Rahman, K. M., El-Sourougy, M. R., Abdel-Monem, N. M., and Ismail, I. M., "Modeling the Sorption Kinetics of Cesium and Strontium Ions on Zeolite A," J. Nucl. Radiochem. Sci., 7(2), 21-27 (2006). https://doi.org/10.14494/jnrs2000.7.2_21
  17. Lagergren, S., "About the Theory of So-Called Adsorption of Soluble Substances," Kunglia Svenska Vetenskapsa-kademiens Handlingar., 24, 1-39 (1898).
  18. Ho, Y. S., and McKay, G., "The Kinetics of Sorption of Basic Dyes from Aqueous Solution by Sphagnum Moss Peat," Can. J. Chem. Eng., 76, 822-827 (1998). https://doi.org/10.1002/cjce.5450760419
  19. Lee, M. G., Kam, S. K., and Suh, K. H., "Adsorption of Non-Degradable Eosin Y by Activated Carbon," J. Environ. Sci. Int., 21(5), 623-631 (2012). https://doi.org/10.5322/JES.2012.21.5.623
  20. El-Kamash, A. M., "Evaluation of Zeolite A for the Sorptive Removal of $Cs^{+}$ and $Sr^{2+}$ Ions from Aqueous Solutions Using Batch and Fixed Bed Column Operations," J. Hazard. Mater., 151(2), 432-445 (2008). https://doi.org/10.1016/j.jhazmat.2007.06.009
  21. Torad, N., L., Naito, M., and Tatami, J., Endo, A., Leo, S., Y., Ishihara, S., Wu, K., C., Wakihara, T., and Yamauchi, Y., "Highly Crystallized Nanometer-Sized Zeolite A with Large Cs Adsorption Capability for the Decontamination of Water," Chem. Asian J., 9(3), 759-763 (2014). https://doi.org/10.1002/asia.201301132
  22. Weber, W. J., and Morris, J. C., "Kinetics of Adsorption on Carbon from Solution," J. Sanit. Eng. Div. ASCE., 89, 31-59 (1962).
  23. Abd El-Latif M., M., and Elkady M. F., "Kinetics Study and Thermodynamic Behavior for Removing Cesium, Cobalt and Nickel Ions from Aqueous Solution Using Nano-Zirconium Vanadate Ion Exchanger," Desalination, 217(1-3), 41-54 (2011). https://doi.org/10.1016/j.desal.2010.12.004
  24. Na, C. K., Han, M. Y., and Park, H. J., "Applicability of Theoretical Adsorption Models for Studies on Adsorption Properties of Adsorbents(1)," J. Korean Soc. Environ. Eng., 33(8), 606-616 (2011). https://doi.org/10.4491/KSEE.2011.33.8.606
  25. Langmuir, I., "The Adsorption of Gases on Plane Surface of Glass, Mica and Platinum," J. Am. Chem. Soc., 40, 1361-1403 (1918). https://doi.org/10.1021/ja02242a004
  26. Freundlich, H. M. F., "Over the Adsorption in Solution," J. Phys. Chem., 57, 385-470 (1906).
  27. Redlich, O., and Peterson, D. L., "A Useful Adsorption Isotherm," J. Phys. Chem., 63, 1024 (1959). https://doi.org/10.1021/j150576a611
  28. Dubinin, M. M., "The Potential Theory of Adsorption of Gases and Vapors for Adsorbents with Energetically Non-Uniform Surface," Chem. Rev., 60, 235-266 (1960). https://doi.org/10.1021/cr60204a006