DOI QR코드

DOI QR Code

인/실리콘 함유 난연성 에폭시 수지의 제조 및 물성

Preparation and Properties of Flame Retardant Epoxy Resins Containing Phosphorous/Silicone Components

  • 김창헌 (부산대학교 유기소재시스템공학과) ;
  • 하도영 (부산대학교 유기소재시스템공학과) ;
  • 이영희 (부산대학교 유기소재시스템공학과) ;
  • 이동진 (한국신발피혁연구원) ;
  • 김한도 (부산대학교 유기소재시스템공학과)
  • Kim, Chang-Heon (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Ha, Do-Young (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Lee, Young Hee (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Lee, Dong-Jin (Korea Institute of Footwear and Leather Technology) ;
  • Kim, Han-Do (Department of Organic Material Science and Engineering, Pusan National University)
  • 투고 : 2017.11.13
  • 심사 : 2017.12.09
  • 발행 : 2017.12.31

초록

영구적 난연성기를 함유한 에폭시 수지를 얻기 위하여, 본 연구에서는 디하이드록시를 함유한 인 화합물[10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phospha phenanthrene-10-oxide, DOPO-HQ]과 디하이드록시를 함유한 실리콘 화합물(polydimethylsiloxane, hydroxyl terminated, PDMS)를 경화하지 않은 에폭시 프리폴리머(diglycidyl ether of bisphenol A, DGEBA)와 반응시킨 다음, 경화제(4,4-diaminodiphenylmethane, DDM)를 사용하여 경화반응 시킨 에폭시 수지를 제조하였다. 제조된 에폭시 수지의 각종 특성을 적외선 분광분석기(FTIR), 시차주사열량기(DSC), 열중량 분석기(TGA), 한계산소지수(LOI)/수직 연소 시험(UL 94-V test), 인장 및 충격 시험을 이용하여 분석하였다. 그리고 사용한 인 및 실리콘 화합물의 함량이 에폭시 경화물의 열적/기계적 성질 및 난연성에 미치는 영향을 조사하였다. 인 및 실리콘 성분이 함유된 에폭시 수지의 열적 및 기계적 물성이 단순 에폭시 수지의 물성에 비교하여 크게 향상되었다는 것을 알 수 있었다. 그리고 인 및 실리콘을 함유한 모든 에폭시 수지는 29.9 ~ 31.8%의 LOI 및 V-0 수준의 UL 94-V로 난연성 기준(LOI: 30% 이상, UL 94-V: V-0)을 통과한 반면, 단순 에폭시 수지는 LOI: 21.4% 및 UL 94-V: no rating으로 난연성 기준에 크게 못 미치는 것을 알 수 있었다.

To obtain epoxy resin with permanently attached flame-retardant groups, phosphorus compound containing di-hydroxyl group [10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phospha phenanthrene-10-oxide, DOPO-HQ] and silicone compound containing di-hydroxyl group (polydimethylsiloxane, hydroxyl terminated, PDMS) were reacted with uncured epoxy prepolymer (diglycidyl ether of bisphenol A, DGEBA) and then cured using 4,4-diaminodiphenylmethane (DDM) as a crosslinking agent. The properties of the resulting epoxy materials were characterized using Fourier transform infrared (FTIR) spectrometer, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), limiting oxygen index (LOI) test/vertical burning test (UL 94-V test), tensile properties test and impact test. This study examined the effect of phosphorus/silicone compound contents on the thermal/mechanical properties and flame retardancy of cured epoxy resins containing phosphorus and silicone compounds. It was found that the thermal/mechanical properties of epoxy resins containing phosphorus and silicone components were higher than those of simple epoxy resin. The flame-retardancy (LOI: 29.9 ~ 31.8% and UL 94-V: V-0) of all samples containing phosphorus compound and phosphrous compound/silicone compound was found to be passed the flame-retardant requirements (LOI: > 30%, UL 94-V: V-0) of LOI and vertical burning tests. However, the flame-retardancy (LOI: 21.4% and UL 94-V: no rating) of simple epoxy resin was found to be failed the flame-retardant requirements.

키워드

참고문헌

  1. Lee, H., and Necille, K., "Handbook of Epoxy Resins," McGraw-Hill, New York (1967).
  2. Wang, D. Z., "Production and Application of Epoxy Resin," Chemical Industry Press, Beijing (2001).
  3. Nakamura, Y., Yamaguchi, M., Okubo, M., and Matsumoto, T., "Effects of Particle Size on Mechanical and Impact Properties of Epoxy Resin Filled with Spherical Silica," J. Appl. Polym. Sci., 45, 1281-1289 (1992). https://doi.org/10.1002/app.1992.070450716
  4. May, C. A., "Epoxy Resins Chemistry and Technology," Marcel Dekker, New York (1988).
  5. Rakotomalala, M., Wagner, S., and Doring, M., "Recent Developments in Halogen Free Flame Retardants for Epoxy Resins for Electrical and Electronic Applications," Materials, 3, 4300-4327 (2010). https://doi.org/10.3390/ma3084300
  6. Jang, B. N., and Choi, J. H., "Research Trends of Flame Retardant and Flame Retardant Resin," Polym. Sci. Technol., 20, 8-15 (2009)
  7. Finch, C. A., "Encyclopedia of Polymer Science and Engineering," John Wiley & Sons, New York, 7 (1987).
  8. Kim, S. J., "Flame Retardant Plastics," Polym. Sci. Technol., 6, 118-127, (1995).
  9. Derouet, D., Morvan, F., and Brosse, J. C., "Chemical Modification of Epoxy Resins by Dialkyl(or aryl) Phosphates: Evaluation of Fire Behavior and Thermal Stability," J. Appl. Polym. Sci., 62, 1855-1868 (1996). https://doi.org/10.1002/(SICI)1097-4628(19961212)62:11<1855::AID-APP10>3.0.CO;2-Y
  10. Wu, C. S., Liu, Y. L., and Hsu K. Y., "Maleimide-epoxy Resins: Preparation, Thermal Properties, and Flame Retardance," Polymer, 44, 565-573 (2002).
  11. Wan, I. Y., and McGrath, J. E., "Triarylphosphine Oxide Containing Nylon 6,6 Copolymers," in Nelson, G. L., Eds., Fiber and Polymer II ACS Symposium Series 599, American Chemical Society, Washington, DC, 29-40 (1995).
  12. Smith, C. D., and McGrath, J. E., "Department of Chemistry and National Science Foundation Science and Technology Center: High Performance Polymeric Adhesive and Composites," SAMPE Proc., 35, 108 (1990).
  13. Knauss, D. M., and McGrath, J. E., "Copolycarbonates and Poly(acrylates) Derived from Hydrolytically Stable Phosphine Oxide Comonomers," in Nelson, G. L., Eds., Fiber and Polymer II ACS Symposium Series 599, American Chemical Society, Washington, DC, 41-55 (1995).
  14. Siddaramaiah, J. K. S., and Prabhakars, G., "Cure Kinetics of Epoxy Formulations with Diaminodiphenyl Methane," Indian J. Eng. & Mater. Sci., 3, 114 (1996).
  15. Hill, D. J. T., George, G. A., and Rogers, D. G., "A Systematic Study of the Microwave and Thermal Cure Kinetics of the DGEMA/DDA and DGEBA/DDM Epoxy-amine Resin Systems," Polym. Adv. Technol., 13, 353 (2002). https://doi.org/10.1002/pat.198
  16. de Miranda, M. I. G., Tomedi, C., Bica, C. I. D., and Samios, D., "A D.S.C. Kinetics Study on the Effect of Filler Concentration on Crosslinking of Diglycidylether of Bisphenol-A with 4, 4'-diaminodiphenylmethane," Polymer, 38, 1017 (1997). https://doi.org/10.1016/S0032-3861(96)00601-5
  17. Gonzalez, M. G., Cabanelas, J. C., and Baselga, J., "Applications of FTIR on Epoxy Resins-Identification, Monitoring the Curing Process, Phase Separation and Water Uptake," In Infrared Spectroscopy-Materials Science, Engineering and Technology, T. Theophanides, Ed., InTech, Rijeka (2012).
  18. Xiong, Y., Jiang, Z., Xie, Y., Zhang, X., and Xu, W., "Development of a DOPO-Containing Melamine Epoxy Hardeners and Its Thermal and Flame-Retardant Properties of Cured Products," J. Appl. Polym. Sci., 127, 4352-4358 (2013). https://doi.org/10.1002/app.37635
  19. Lee, Y. H., Kim, E. J., and Kim, H. D., "Synthesis and Properties of Waterborne Poly(urethane urea)s Containing Polydimethylsiloxane," J. Appl. Polym. Sci., 120, 212-219 (2011). https://doi.org/10.1002/app.33007
  20. Hilado, C. J., "Flammability Handbook for Plastics," Technomic publishing Co. INC., Pennstylvania (1982).
  21. Friedman, R., "Principles of Fire Protection Chemistry and Physics," NFPA (1998).
  22. Dufton, P. W., "Fire-Additives and Materials," RAPRA Technology LTD, UK (1995).

피인용 문헌

  1. Effects of the Reactive Flame-Retardant 3-(Hydroxyphenylphosphinyl)-Propanoic Acid Content on the Flame Retardancy of Epoxy Resins vol.57, pp.6, 2017, https://doi.org/10.12772/tse.2020.57.323
  2. Preparation and characterization of thermoresponsive poly(N‐isopropylacrylamide‐co‐N‐isopropylmethacrylamide) hydrogel materials for smart windows vol.138, pp.6, 2017, https://doi.org/10.1002/app.49788