DOI QR코드

DOI QR Code

Reliable and High Spatial Resolution Method to Identify the Number of MoS2 Layers Using a Scanning Electron Microscopy

  • Sharbidre, Rakesh Sadanand (Department of Material Science Engineering, Paichai University) ;
  • Park, Se Min (Department of Material Science Engineering, Paichai University) ;
  • Lee, Chang Jun (Division of Industrial Metrology, Korea Research Institute of Standards and Science) ;
  • Park, Byong Chon (Division of Industrial Metrology, Korea Research Institute of Standards and Science) ;
  • Hong, Seong-Gu (Division of Industrial Metrology, Korea Research Institute of Standards and Science) ;
  • Bramhe, Sachin (Department of Material Science Engineering, Paichai University) ;
  • Yun, Gyeong Yeol (Department of Material Science Engineering, Paichai University) ;
  • Ryu, Jae-Kyung (Department of Dental Technology and Science, ShinHan University) ;
  • Kim, Taik Nam (Department of Material Science Engineering, Paichai University)
  • Received : 2017.10.31
  • Accepted : 2017.11.30
  • Published : 2017.12.27

Abstract

The electronic and optical characteristics of molybdenum disulphide ($MoS_2$) film significantly vary with its thickness, and thus a rapid and accurate estimation of the number of $MoS_2$ layers is critical in practical applications as well as in basic researches. Various existing methods are currently available for the thickness measurement, but each has drawbacks. Transmission electron microscopy allows actual counting of the $MoS_2$ layers, but is very complicated and requires destructive processing of the sample to the point where it will no longer be useable after characterization. Atomic force microscopy, particularly when operated in the tapping mode, is likewise time-consuming and suffers from certain anomalies caused by an improperly chosen set point, that is, free amplitude in air for the cantilever. Raman spectroscopy is a quick characterization method for identifying one to a few layers, but the laser irradiation causes structural degradation of the $MoS_2$. Optical microscopy works only when $MoS_2$ is on a silicon substrate covered with $SiO_2$ of 100~300 nm thickness. The last two optical methods are commonly limited in resolution to the micrometer range due to the diffraction limits of light. We report here a method of measuring the distribution of the number of $MoS_2$ layers using a low voltage field emission electron microscope with acceleration voltages no greater than 1 kV. We found a linear relationship between the FESEM contrast and the number of $MoS_2$ layers. This method can be used to characterize $MoS_2$ samples at nanometer-level spatial resolution, which is below the limits of other methods.

Keywords

References

  1. A. K. Geim and K. S. Novoselov, Nature Mater., 6, 183 (2007). https://doi.org/10.1038/nmat1849
  2. A. Castellanos-Gomez, Nature Photonics, 10, 202 (2016). https://doi.org/10.1038/nphoton.2016.53
  3. R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim and P. Blake, Nano Micro Small, 7, 465 (2011).
  4. D. Pacile, J. C. Meyer, C. O. Girit and A. Zettl, Appl. Phys. Lett., 92, 133107 (2008). https://doi.org/10.1063/1.2903702
  5. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard and J. Hone, Nature Nanotechnol., 5, 722 (2010). https://doi.org/10.1038/nnano.2010.172
  6. H. Li, G. Lu, Z. Yin, Q. He, H. Li, Q. Zhang and H. Zhang, Nano Micro Small, 8, 682 (2012).
  7. A. Castellanos-Gomez, N. Agrait and G. Rubio-Bollinger, Appl. Phys. Lett., 96, 213116 (2010). https://doi.org/10.1063/1.3442495
  8. D. J. Late, B. Liu, H. S. S. R. Matte, C. N. R. Rao and V. P. Dravid, Adv. Func. Mat., 22, 1894 (2012). https://doi.org/10.1002/adfm.201102913
  9. B. Radisavljevic, A. Radenovic, J. Brivio,V. Giacometti and A. Kis, Nat. Nanotechnol., 6, 147 (2011). https://doi.org/10.1038/nnano.2010.279
  10. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli and F. Wang, Nano Lett., 10, 1271 (2010). https://doi.org/10.1021/nl903868w
  11. M. M. Benameur, B. Radisavljevic, J. S. Heron, S. Sahoo, H. Berger and A. Kis, IOP Nanotechnology, 22, 125706 (2011). https://doi.org/10.1088/0957-4484/22/12/125706
  12. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen and Y. Zhang, Nat. Nanotechnol., 9, 372 (2014). https://doi.org/10.1038/nnano.2014.35
  13. S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto and B. Ozyilmaz, Appl. Phys. Lett., 104, 103106 (2014). https://doi.org/10.1063/1.4868132
  14. R. Fei and L. Yang, Nano Lett., 14, 2884 (2014). https://doi.org/10.1021/nl500935z
  15. Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Chu, J. T. Wang, C. S. Chang, L. J. Li and T. W. Lin, Adv. Mater., 24, 2320 (2012). https://doi.org/10.1002/adma.201104798
  16. Y. Shi, W. Zhou, A. Y. Lu, W. Fang, Y. H. Lee, A. L. Hsu, S. M. Kim, K. K. Kim, H. Y. Yang, L. J. Li, J. C. Idrobo and J. Kong, Nano Lett., 12, 2784 (2012). https://doi.org/10.1021/nl204562j
  17. V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano and J. N. Coleman, Science, 340, 1226419 (2013). https://doi.org/10.1126/science.1226419
  18. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim, Proc. Natl. Acad. USA, 102, 10451 (2005). https://doi.org/10.1073/pnas.0502848102
  19. H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu and H. Zhang, Nano Micro Small, 9, 1974 (2013).
  20. H. Li, J. Wu, X. Huang, G. Lu, J. Yang, X. Lu, Q. Xiong and H. Zhang, ACS Nano, 7, 10344 (2013). https://doi.org/10.1021/nn4047474
  21. D. Akinwande, N. Petrone and J. Hone, Nat. Commun., 5, 5678 (2014). https://doi.org/10.1038/ncomms6678
  22. S. Larentis, B. Fallahazad and E. Tutuc, Appl. Phys. Lett., 101, 223104 (2012). https://doi.org/10.1063/1.4768218
  23. R. S. Sharbidre, C. J. Lee, S. G. Hong, J. Ryu and T. N. Kim, Korean J. Mater. Res., 26, 704 (2016). https://doi.org/10.3740/MRSK.2016.26.12.704
  24. P. Li, C. Jiang, S. Xu, Y. Zhuang, L. Gao, A. Hu, H. Wang and Y. Lu, Nanoscale, 9, 9119 (2017). https://doi.org/10.1039/C7NR02171B
  25. G. K. Binning, Phys. Scr., T19, 53 (1987).
  26. H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier and D. Baillargeat Adv. Funct. Mater., 22, 1385 (2012). https://doi.org/10.1002/adfm.201102111
  27. P. Nemes-Incze, Z. Osvath, K. Kamaras and L. P. Biro, Carbon, 46, 1435 (2008). https://doi.org/10.1016/j.carbon.2008.06.022
  28. J. H. Lee, D. W. Jang, S. G. Hong, B. C. Park, J. H. Kim and H. J. Jung, Carbon, 118, 475 (2017). https://doi.org/10.1016/j.carbon.2017.03.081
  29. P. E. Gaskell, H. S. Skulason, C. Rodenchuk and T. Szkopek, Appl. Phys. Lett., 94, 2007 (2009).
  30. Y. Hwangbo, C. K. Lee, A. E. Mag-Isa, J. W. Jang, H. J. Lee, S. B. Lee, S. S. Kim and J. H. Kim, Carbon, 77, 454 (2014). https://doi.org/10.1016/j.carbon.2014.05.050
  31. C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone and S. Ryu, ACS Nano, 4, 2695 (2010). https://doi.org/10.1021/nn1003937
  32. Y. Y. Wang, R. X. Gao, Z. H. Ni, H. He, S. P. Guo, H. P. Yang, C. X. Cong and T. Yu, IOP Nanotechnology, 23, 495713 (2012). https://doi.org/10.1088/0957-4484/23/49/495713
  33. A. E. Mag-Isa, C. K. Lee, S. M. Kim, J. H. Kim and C. S. Oh, Carbon, 94, 646 (2015). https://doi.org/10.1016/j.carbon.2015.07.050
  34. H. Hiura, H. Miyazaki and K. Tsukagoshi, Appl. Phys. Express, 3, 95101 (2010). https://doi.org/10.1143/APEX.3.095101