References
- ASTM (1985), Standard Practices for Cycle Counting in Fatigue Analysis, Technical Report ASTM Standard E1049-85, ASTM International.
- Belver, A.V., Iban, A.L. and Martin, C.E.L. (2012), "Coupling between structural and fluid dynamic problems applied to vortex shedding in a 90 m steel chimney", J. Wind Eng. Industr. Aerodyn., 100(1), 30-37. https://doi.org/10.1016/j.jweia.2011.10.007
- Berny-Brandt, E.A. and Ruiz, S.E. (2016), "Reliability over time of wind turbines steel towers subjected to fatigue", Wind Struct., 3(1), 75-90.
- Chen, X. (2013), "Estimation of stochastic crosswind response of wind-excited tall buildings with nonlinear aerodynamic damping", Eng. Struct., 56, 766-778. https://doi.org/10.1016/j.engstruct.2013.05.044
- Chen, X. (2014), "Analysis of crosswind fatigue of wind-excited structures with nonlinear aerodynamic damping", Eng. Struct., 74, 145-156. https://doi.org/10.1016/j.engstruct.2014.04.049
- Dyrbye, C. and Hansen, S. (1997), Wind Loads on Structures, Wiley.
- E1049-85, A.S. (1985), Standard Practices for Cycle Counting in Fatigue Analysis, Annual Book of ASTM Standars, ASTM International, 3.
- Eurocode-1 (2010), Actions on Structures. Part 1-4: General Actions- Wind Actions, Technical Report BS EN 1991-1-4:2005+A1:2010, British Standards.
- Gorski, P. (2009), "Some aspects of the dynamic cross-wind response of tall industrial chimney", Wind Struct., 12(3), 259-279. https://doi.org/10.12989/was.2009.12.3.259
- Hansen, S. (1998), "Vortex-Induced vibrations of line-like structures", CICIND Rep., 15(4), 15-23.
- IEC-61400-1 (2003), Part 1: Safety Requirements, Wind Turbine Generator Systems IEC 61400-1, Edition 3, International Electrotechnical Commission.
- Llorente Gonzalez, J.I. (2006), Tool for Preventing the Vortex Effect, WO Patent App. PCT/ES2006/000,148.
- Nguyen, T.C., Huynh, T.C. and Kim, J.T. (2015), "Numerical evaluation for vibration-based damage detection in wind turbine tower structure", Wind Struct., 21(6), 657-675. https://doi.org/10.12989/was.2015.21.6.657
- Nguyen, T.C., Huynh, T.C., Yi, J.H. and Kim, J.T. (2017), "Hybrid bolt-loosening detection in wind turbine tower structures by vibration and impedance responses", Wind Struct., 24(4), 385-403. https://doi.org/10.12989/was.2017.24.4.385
- Nies lony, A. (2009), "Determination of fragments of multiaxial service loading strongly in uencing the fatigue of machine components", Mech. Syst. Sign. Proc., 23(8), 2712-2721. https://doi.org/10.1016/j.ymssp.2009.05.010
- Ragan, P. and Manuel, L. (2007), "Comparing estimates of wind turbine fatigue loads using timedomain and spectral methods", Wind Eng., 31(2), 83-99. https://doi.org/10.1260/030952407781494494
- Repetto, M.P. and Solari, G. (2002), "Dynamic crosswind fatigue of slender vertical structures", Wind Struct., 5(6), 527-542. https://doi.org/10.12989/was.2002.5.6.527
- Repetto, M.P. and Solari, G. (2010), "Wind-induced fatigue collapse of real slender structures", Eng. Struct., 32(12), 3888-3898. https://doi.org/10.1016/j.engstruct.2010.09.002
- Ruscheweyh, H. (1994), Vortex Excited Vibrations, in Wind-Excited Vibrations of Structures, Springer, 51-84.
- Shinozuka, M. and Deodatis, G. (1991), "Simulation of stochastic processes by spectral representation", Appl. Mech. Rev., 44(4), 191-204. https://doi.org/10.1115/1.3119501
- Tranvik, P. and Alpsten, G. (2002), Dynamic Behaviour under Wind Loading of a 90 m Steel Chimney, Report 9647-3, Alstom Power Station AB.
- Trivellato, F. and Castelli, M.R. (2015), "Appraisal of Strouhal number in wind turbine engineering", Renew. Sustain. Energy Rev., 49, 795-804. https://doi.org/10.1016/j.rser.2015.04.127
- Veers, P.S. (1988), Three-Dimensional Wind Simulation, Technical Report SAND-88-0152C, Sandia National Labs., Albuquerque, NM, U.S.A.
- Verboom, G. and Van Koten, H. (2010), "Vortex excitation: Three design rules tested on 13 industrial chimneys", J. Wind Eng. Industr. Aerodyn., 98(3), 145-154. https://doi.org/10.1016/j.jweia.2009.10.008
- Vickery, B. and Basu, R. (1983a), "Across-wind vibrations of structure of circular cross-section. Part II. Development of a mathematical model for full-scale application", J. Wind Eng. Industr. Aerodyn., 12(1), 75-97. https://doi.org/10.1016/0167-6105(83)90081-8
- Vickery, B. and Basu, R. (1983b), "Across-wind vibrations of structures of circular cross-section. Part I. Development of a mathematical model for two-dimensional conditions", J. Wind Eng. Industr. Aerodyn., 12(1), 49-73. https://doi.org/10.1016/0167-6105(83)90080-6
- Vickery, B. and Basu, R. (1984), "The response of reinforced concrete chimneys to vortex shedding", Eng. Struct., 6(4), 324-333. https://doi.org/10.1016/0141-0296(84)90030-0
- Vickery, B.J. and Clark, A.W. (1972), "Lift or across-wind response to tapered stacks", J. Struct. Div., 98(1), 1-20.
Cited by
- Alternative steel lattice structures for wind energy converters vol.12, pp.1, 2021, https://doi.org/10.1108/ijsi-05-2019-0042