References
- Herman, D. (1956) Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11: 298-300. https://doi.org/10.1093/geronj/11.3.298
- Beckman, K. B. and Ames, B. N. (1998) The free radical theory of aging matures. Physiol. Rev. 78: 547-581. https://doi.org/10.1152/physrev.1998.78.2.547
- Si, H. and Liu, D. (2014) Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. J. Nutr. Biochem. 25: 581-591. https://doi.org/10.1016/j.jnutbio.2014.02.001
- Liao, V. H. C., Yu, C. W., Chu, Y. J., Li, W. H., Hsieh, Y. C. and Wang, T. T. (2011) Curcumin-mediated lifespan extension in Caenorhabdits elegans. Mech. Ageing Dev. 132: 480-487. https://doi.org/10.1016/j.mad.2011.07.008
- Bass, T. M., Weinkove, D., Houthoodf, K., Gems, D. and Patridge, L. (2007) Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech. Ageing Dev. 128: 546-552. https://doi.org/10.1016/j.mad.2007.07.007
- Grunz, G., Haas, K., Soukup, S., Klingenspor, M., Kulling, S. E., Daniel, H. and Spanier, B. (2012) Structural features and bioavailability of four flavonoids and their implications for lifespan-extending and antioxidant actions in C. elegans. Mech. Ageing Dev. 133: 1-10. https://doi.org/10.1016/j.mad.2011.11.005
- Pandey, R., Gupta, S., Shukla, V., Tandon, S. and Shukla, V. (2013) Antiaging, antistress and ROS scavenging activity of crude extract of Ocimum sanctum (L.) in Caenorhabditis elegans (Maupas, 1900). Indian J. Exp. Biol. 51: 515-521.
- Tiwari, S., Singh, S., Pandey, P., Saikia, S. K., Negi, A. S., Gupta, S. K., Pandey, R. and Banerjee, S. (2014) Isolation, structure determination, and antiaging effects of 2,3-pentanediol from endophytic fungus of Curcuma amada and docking studies. Protoplasma 251: 1089-1098. https://doi.org/10.1007/s00709-014-0617-0
- Ki, B., Lee, E. B., Kim, J. H., Yang, J. H., Kim, D. K. and Kim. Y.-S. (2017) Anti-oxidative effects of Allium hookeri leaves in Caenorhabditis elegans. Kor. J. Pharmacogn. 48: 141-147.
- Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
- Lithgow, G. J., White, T. M., Melov, S. and Johnson, T. E. (1995) Thermo tolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl. Acad. Sci. 92: 7540-7544. https://doi.org/10.1073/pnas.92.16.7540
- Lee, E.Y., Shim, Y. H., Chitwood, D. J., Hwang, S. B., Lee, J. and Paik, Y. K. (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun. 328: 929-936. https://doi.org/10.1016/j.bbrc.2005.01.050
- Guha, S., Natarajan, O., Murbach, C. G., Dinh, J., Wilson, E. C., Cao, M., Zou, S. and Dong, Y. (2014) Supplement timing of cranberry extract plays a key role in promoting Caenorhabditis elegans healthspan. Nutrients 21: 911-921.
- Hope, I. A. (1999) Background on Caenorhabditis elegans. In C. elegans: A Practical Approach, 1-15. Oxford University Press, NY.
- Kaletta, T. and Henartner, M. O. (2006) Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov. 5: 387-399. https://doi.org/10.1038/nrd2031
- Kobet, R. A., Pan, X., Zhang, B., Pak, S. C., Asch, A. S. and Lee, M. H. (2014) Caenorhabditis elegans: A model system for anti-cancer drug discovery and therapeutic target identification. Biomol. Ther. 22: 371-383. https://doi.org/10.4062/biomolther.2014.084
- van der Bliek, A. M., Sedensky, M. M. and Morgan, P. G. (2017) Cell biology of the mitochondrion. Genetics 207: 843-871. https://doi.org/10.1534/genetics.117.300262
- Rieckher, M. and Tavernarakis, N. (2017) Caenorhabditis elegans microinjection. Bio. Protoc. 7: e2565.
- Salim, C. and Rajini, P. S. (2016) Glucose-rich diet aggravates monocrotophos-induced dopaminergic neuronal dysfunction in Caenorhabditis elegans. J. Appl. Toxicol. 37: 772-780.
- Hostettler, L., Grundy, L., Kaser-Pebernard, S., Wicky, C., Schafer, W. R. and Glauser, D. A. (2017) The bright fluorescent protein mNeonGreen facilitates protein expression analysis in vivo. G3 (Bethesda) 7: 607-615.