DOI QR코드

DOI QR Code

Microbial Transformation of Two Prenylated Naringenins

  • Han, Fubo (College of Pharmacy and Research Institute of Drug Development, Chonnam National University) ;
  • Lee, Ik-Soo (College of Pharmacy and Research Institute of Drug Development, Chonnam National University)
  • Received : 2017.08.22
  • Accepted : 2017.10.26
  • Published : 2017.12.29

Abstract

Microbial transformation of $({\pm})$-6-(1,1-dimethylallyl)naringenin (6-DMAN, 1) and $({\pm})$-5-(O-prenyl) naringenin-4',7-diacetate (5-O-PN, 2) was performed by using fungi. Scale-up fermentation studies with Mucor hiemalis, Cunninghamella elegans var. elegans, and Penicillium chrysogenum led to the isolation of five microbial metabolites. Chemical structures of the metabolites were determined by spectral analyses as $({\pm})$-8-prenylnaringenin (3), (2S)-5,4'-dihydroxy-7,8-[(R)-2-(1-hydroxy-1-methylethyl)-2,3-dihydrofurano]flavanone (4), $({\pm})$-5-(O-prenyl)naringenin-4'-acetate (5), $({\pm})$-naringenin-4'-acetate (6), and $({\pm})$-naringenin (7), of which 5 was identified as a new compound.

Keywords

References

  1. Sumathi, R.; Tamizharasi, S.; Sivakumar, T. Int. J. Curr. Adv. Res. 2015, 4, 234-236.
  2. Ruh, M. F.; Zacharewski, T.; Connor, K.; Howell, J.; Chen, I.; Safe, S. Biochem. Pharmacol. 1995, 50, 1485-1493. https://doi.org/10.1016/0006-2952(95)02061-6
  3. Zierau, O.; Gester, S.; Schwab, P.; Metz, P.; Kolba, S.; Wulf, M.; Vollmer, G. Planta Med. 2002, 68, 449-451. https://doi.org/10.1055/s-2002-32089
  4. Meiyanto, E.; Hermawan, A.; Anindyajati. Asian Pac. J. Cancer Prev. 2012, 13, 427-436. https://doi.org/10.7314/APJCP.2012.13.2.427
  5. Assini, J. M.; Mulvihill, E. E.; Huff, M. W. Curr. Opin. Lipidol. 2013, 24, 34-40. https://doi.org/10.1097/MOL.0b013e32835c07fd
  6. Zierau, O.; Hamann, J.; Tischer, S.; Schwab, P.; Metz, P.; Vollmer, G.; Gutzeit, H. O.; Scholz, S. Biochem. Biophys. Res. Commun. 2005, 326, 909-916. https://doi.org/10.1016/j.bbrc.2004.11.124
  7. Seo, E.-K.; Silva, G. L.; Chai, H.-B.; Chagwedera, T. E.; Farnsworth, N. R.; Cordell, G. A.; Pezzuto, J. M.; Kinghorn, A. D. Phytochemistry 1997, 45, 509-515. https://doi.org/10.1016/S0031-9422(96)00871-0
  8. Zierau, O.; Morrissey, C.; Watson, R. W. G.; Schwab, P.; Kolba, S.; Metz, P.; Vollmer, G. Planta Med. 2003, 69, 856-858. https://doi.org/10.1055/s-2003-43222
  9. Tokalov, S. V.; Henker, Y.; Schwab, P.; Metz, P.; Gutzeit, H. O. Pharmacology 2004, 71, 46-56. https://doi.org/10.1159/000076261
  10. Clark, A. M.; McChesney, J. D.; Hufford, C. D. Med. Res. Rev. 1985, 5, 231-253. https://doi.org/10.1002/med.2610050203
  11. Han, F.; Lee, I.-S. Phytochem Lett. 2016, 18, 136-139. https://doi.org/10.1016/j.phytol.2016.10.002
  12. Han, F.; Lee, I.-S. Nat. Prod. Res. 2017, 31, 883-889. https://doi.org/10.1080/14786419.2016.1250092
  13. Gester, S.; Metz, P.; Zierau, O.; Vollmer, G. Tetrahedron 2001, 57, 1015-1018. https://doi.org/10.1016/S0040-4020(00)01078-4
  14. Kim, H. J.; Kim, S. H.; Kang, B. Y.; Lee, I.-S. Arch. Pharm. Res. 2008, 31, 1241-1246. https://doi.org/10.1007/s12272-001-2102-5
  15. Tahara, S.; Ingham, J. L.; Mizutani, J. Agric. Biol. Chem. 1987, 51, 211-216.
  16. Jang, D. S.; Cuendet, M.; Hawthorne, M. E.; Kardono, L. B. S.; Kawanishi, K.; Fong, H. H. S.; Mehta, R. G.; Pezzuto, J. M.; Kinghorn, A. D. Phytochemistry 2002, 61, 867-872. https://doi.org/10.1016/S0031-9422(02)00378-3
  17. Kyriakou, E.; Primikyri, A.; Charisiadis, P.; Katsoura, M.; Gerothanassis, I. P.; Stamatis, H.; Tzakos, A. G. Org. Biomol. Chem. 2012, 10, 1739-1742. https://doi.org/10.1039/c2ob06784f
  18. Maltese, F.; Erkelens, C.; van der Kooy, F.; Choi, Y. H.; Verpoorte, R. Food Chem. 2009, 116, 575-579. https://doi.org/10.1016/j.foodchem.2009.03.023