DOI QR코드

DOI QR Code

수명주기가 짧은 상품들에 대한 시퀀스 기반 개인화 서비스

A sequence-based personalized service for the short life cycle products

  • 투고 : 2017.11.02
  • 심사 : 2017.12.20
  • 발행 : 2017.12.28

초록

대부분의 신상품들은 시장에서 급격히 사라질 뿐만 아니라 기존 상품들의 매출감소를 불러온다. 이처럼 수명주기가 짧은 상품으로 인해 소매상들은 과다한 재고를 보유하게 될 뿐만 아니라 소비자들은 자신들의 선호를 맞는 제품들을 발견하는데 어려움을 겪는다. 이런 문제를 해결에 하는데 있어서 추천 시스템은 좋은 해결방법이 될 수 있다. 그러나 대부분의 추천 시스템들은 소비자의 고정된 선호를 이용하기 때문에 변화하는 소비자의 선호를 반영하지 못하는 문제가 있다. 이러한 문제를 해결하기 위하여 본 연구에서는 시간에 따라 변화하는 소비자의 선호를 반영한 추천 방법론을 제안하였다. 제안한 방법론은 소비자의 동적 선호 프로파일 작성, 네이버 형성, 추천 리스트 작성의 3 단계로 구성되어 있으며, 모바일 이미지 거래 데이터를 이용하여 제안된 방법론의 유용성을 검증하였다. 시험결과 제시된 방법론의 추천 정확도가 전통적인 협업필터링의 정확도 보다 높았다. 이러한 결과를 통해, 본 연구에서 제한한 방법론이 짧은 수명주기를 가진 제품을 추천하는데 효과적이라는 결론을 내릴 수 있다. 따라서 향후 제안된 방법론을 현업에 적용하여 실제적 유용성을 검증할 필요가 있다.

Most new products not only suddenly disappear in the market but also quickly cannibalize older products. Under such a circumstance, retailers may have too much stock, and customers may be faced with difficulties discovering products suitable to their preferences among short life cycle products. To address these problems, recommender systems are good solutions. However, most previous recommender systems had difficulty in reflecting changes in customer preferences because the systems employ static customer preferences. In this paper, we propose a recommendation methodology that considers dynamic customer preferences. The proposed methodology consists of dynamic customer profile creation, neighborhood formation, and recommendation list generation. For the experiments, we employ a mobile image transaction dataset that has a short product life cycle. Our experimental results demonstrate that the proposed methodology has a higher quality of recommendation than a typical collaborative filtering-based system. From these results, we conclude that the proposed methodology is effective under conditions where most new products have short life cycles. The proposed methodology need to be verified in the physical environment at a future time.

키워드

참고문헌

  1. Nielsen, Every breakthrough product needs an audience,. http://www.nielsen.com/content/dam/corporate/u/en/NielsenGlobalNewProductsReportFINAL.pdf, 2013.
  2. T. Higuchi and M. D. Troutt., "Dynamic simulation of the supply chain for a short life cycle product-Lessons from the Tamagotchi case." Computers & Operations Research, Vol. 31, No. 7, pp. 1097-1114, 2004. https://doi.org/10.1016/S0305-0548(03)00067-4
  3. Amazon - http://www.amazon.com
  4. Netflix- http://www.netflix.com
  5. S. H. Park, and Y. H. Kim, "User recognition based TV programs recommendation system in smart devices environment." Journal of Digital Convergence, Vol. 11, No. 1, pp. 249-254, 2013. https://doi.org/10.14400/JDPM.2013.11.1.249
  6. J. T. Oh, and S. Y. Lee, "Fuzzy-AHP based mobile games recommendation system using Bayesian network." Journal of Digital Convergence, Vol. 15, No. 4, pp. 461-464, 2017. https://doi.org/10.14400/JDC.2017.15.4.461
  7. L. Lu, M. Medo, C. H. Yeung, Y. C. Zhang, Z. K., Zhang, and T. Zhou, "Recommender systems." Physics Reports, Vol. 519, No. 1, pp. 1-49, 2012. https://doi.org/10.1016/j.physrep.2012.02.006
  8. C, Tseng, "Portfolio management using hybrid recommendation system." In e-Technology, e-Commerce and e-Service, 2004. EEE'04. 2004 IEEE International Conference on IEEE, pp.202-206, 2004,
  9. G. J, Kim, and J. S. Han, "Application method of task ontology technology for recommendation of automobile parts." Journal of Digital Convergence, Vol. 10, No. 6, pp. 275-281, 2012. https://doi.org/10.14400/JDPM.2012.10.6.275
  10. H. J. Ahn, "A new similarity measure for collaborative filtering to alleviate the new customer cold-starting problem." Information Sciences, Vol. 178. No. 1, pp. 37-51, 2008, https://doi.org/10.1016/j.ins.2007.07.024
  11. Z. Huang, D. Zeng, and H. Chen, "A comparison of collaborative-filtering recommendation algorithms for e-commerce." IEEE Intelligent Systems, Vol. 22, No. 5, pp. 68-78, 2007. https://doi.org/10.1109/MIS.2007.4338497
  12. D. Jia., F. Zhang, and S. Liu., "A robust collaborative filtering recommendation algorithm based on multidimensional trust model." Journal of Software, Vol. 8, No. 1, pp. 11-18. 2013.
  13. C. F. Tsai, and C. Hung, "Cluster ensembles in collaborative filtering recommendation." Applied Soft Computing, Vol. 12, No.4, pp. 1417-1425. 2012. https://doi.org/10.1016/j.asoc.2011.11.016
  14. K, Yu, A. Schwaighofer, V. Tresp, X. Xu, and H. P. Kriegel, "Probabilistic memory-based collaborative filtering." Knowledge and Data Engineering, IEEE Transactions on, Vol. 16, No. 1, pp.56-69, 2004. https://doi.org/10.1109/TKDE.2004.1264822
  15. Zou. T, Wang. Y, Wei. X, Li. Z, and Yang. G, "An effective collaborative filtering via enhanced similarity and probability interval prediction." Intelligent Automation & Soft Computing, Vol. 20, No. 4, pp. 555-566, 2014, https://doi.org/10.1080/10798587.2014.934598
  16. G. Adomavicius., R. Sankaranarayanan, S. Sen, and A. Tuzhilin, "Incorporating contextual information in recommender systems using a multidimensional approach." ACM Transactions on Information Systems (TOIS), Vol. 23, No. 1, pp. 103-145, 2005. https://doi.org/10.1145/1055709.1055714
  17. H. Drachsler, H. G. Hummel, and R. Koper, "Personal recommender systems for learners in lifelong learning networks: the requirements, techniques and model." International Journal of Learning Technology, Vol. 3, No. 4, pp.404-423, 2008. https://doi.org/10.1504/IJLT.2008.019376
  18. P. Han, B. Xie, F. Yang., and R. Shen, "A scalable P2P recommender system based on distributed collaborative filtering." Expert systems with applications, Vol. 27, No. 2, pp. 203-210, 2004. https://doi.org/10.1016/j.eswa.2004.01.003
  19. H. K. Kim, J. K. Kim, and Y. U. Ryu, "Personalized recommendation over a customer network for ubiquitous shopping." Services Computing, IEEE Transactions on, Vol. 2, No. 2, pp. 140-151, 2009. https://doi.org/10.1109/TSC.2009.7
  20. B. Lika, K. Kolomvatsos., and S. Hadjiefthymiades, "Facing the cold start problem in recommender systems." Expert Systems with Applications, Vol. 41, No. 4, pp. 2065-2073, 2014. https://doi.org/10.1016/j.eswa.2013.09.005
  21. B. Sarwar, G. Karypis., J. Konstan., and J. Riedl, "Analysis of recommendation algorithms for e-commerce." In Proceedings of the 2nd ACM conference on Electronic commerce, ACM, pp. 158-167, 2000.
  22. C. X. Yin, and Q. K. Peng, "A careful assessment of recommendation algorithms related to dimension reduction techniques." Knowledge-Based Systems, Vol. 27, pp. 407-423, 2012. https://doi.org/10.1016/j.knosys.2011.11.022
  23. J. Eicher, S. Evenson, and H. Lutz, , The visible self. Fairchild Publications, New York, 2000.
  24. S. U. Rahman, S. Saleem., S. Akhtar, T. Ali, and M. A. Khan, "Consumers' Adoption of Apparel Fashion: The Role of Innovativeness, Involvement, and Social Values." International Journal of Marketing Studies, Vol. 6, No. 3, p49. 2014.
  25. S. J. Oh, and J-Y. Kim, "A hierarchical clustering algorithm for categorical sequence data." Information processing letters, Vol. 91, No. 3, pp. 135-140, 2004. https://doi.org/10.1016/j.ipl.2004.04.002
  26. Y. B. Cho, Y. H. Cho, and S. H. Kim, "Mining changes in customer buying behavior for collaborative recommendations." Expert Systems with Applications, Vol. 28, No. pp. 359-369, 2005. https://doi.org/10.1016/j.eswa.2004.10.015
  27. H. Wang, and S. Wang, "Mining purchasing sequence data for online customer segmentation." International Journal of services operations and informatics, Vol. 2, No. 4, pp 382-390, 2007. https://doi.org/10.1504/IJSOI.2007.015641
  28. Y. Zhang, and J. Cao, "Personalized recommendation based on behavior sequence similarity measures." In Behavior and Social Computing, Springer International Publishing. pp. 165-177, 2013.
  29. P. Childerhouse, and D. Towill, "Engineering supply chains to match customer requirements." Logistics information management, vol .13. No. 6, pp.337-346, 2000. https://doi.org/10.1108/09576050010355635
  30. A. A. Kurawarwala, and H. Matsuo, "Product growth models for medium-term forecasting of short life cycle products." Technological Forecasting and Social Change, Vol. .57, No. 3, pp. 169-196, 1998. https://doi.org/10.1016/S0040-1625(97)00102-9
  31. X. H. Xu, and Q. Z. Song, "Forecasting for products with short life cycle based on improved BASS model." Industrial Engineering and Management, Vol. 5, pp. 27-31, 2007.
  32. C. V. Trappey, and H. Y. Wu, "An evaluation of the time-varying extended logistic, simple logistic, and Gompertz models for forecasting short product lifecycles." Advanced Engineering Informatics, Vol. 22, No. 4, pp. 421-430, 2008. https://doi.org/10.1016/j.aei.2008.05.007
  33. T. Higuchi, and M. D. Troutt, Life cycle management in supply chains: Identifying innovations through the case of the VCR. Hershey, PA: IGI Publishing. 2008.
  34. B. Liu, J. Chen, S. Liu, and R. Zhang, "Supply-chain coordination with combined contract for a short-life-cycle product." Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, Vol. 36, No. 1, pp. 53-61, 2006. https://doi.org/10.1109/TSMCA.2005.859172
  35. G. E. Yap, X. L. Li, and S. Y. Philip, "Effective next-items recommendation via personalized sequential pattern mining." In Database Systems for Advanced Applications, Springer Berlin Heidelberg, pp. 48-64, 2012.
  36. N. Hariri, B. Mobasher, and R. Burke, "Context-aware music recommendation based on latenttopic sequential patterns." In Proceedings of the sixth ACM conference on Recommender systems, ACM, pp. 131-138. 2012.
  37. H. S. Moon, J. K. Kim, and Y. U. Ryu, "A sequence-based filtering method for exhibition booth visit recommendations." International Journal of Information Management, Vol. 33, No. 4, pp. 620-626, 2013. https://doi.org/10.1016/j.ijinfomgt.2013.03.004
  38. Salehi. M, Kamalabadi I. N, and Ghoushchi. M. B. G, "Personalized recommendation of learning material using sequential pattern mining and attribute based collaborative filtering." Education and Information Technologies, Vol. 19, No. 4, pp.713-735, 2014. https://doi.org/10.1007/s10639-012-9245-5