DOI QR코드

DOI QR Code

Streptomyces sp. DG-2 with Anti-MRSA (Methicillin Resistant Staphylococcus aureus) Activity

항 MRSA (Methicillin Resistant Staphylococcus aureus) 활성을 나타내는 Streptomyces sp. DG-2

  • Jeong, Seong-Yun (Department of Biomedical Science, Daegu Catholic University)
  • 정성윤 (대구가톨릭대학교 의생명과학과)
  • Received : 2017.12.07
  • Accepted : 2017.12.28
  • Published : 2017.12.31

Abstract

We isolated marine bacterium, isolate DG-2 which produces the antibiotics against MRSA (methicillin-resistant Staphylococcus aureus). This isolate DG-2 was examined by its morphological, biochemical properties, and 16S rRNA sequencing analysis. And then, isolate DG-2 was identified to the genus Streptomyces. Therefore, this isolate was designated as Streptomyces sp. DG-2. Streptomyces sp. DG-2 grew relatively well at $25^{\circ}C$, pH 7.0, and NaCl 1.0%. For the pre-purification of the bioactive compounds, DG-2 was fermented in 30 L PPES-II medium, and the culture filtrates of DG-2 was extracted by ethyl acetate. The ethyl acetate extract of DG-2 showed the significant anti-MRSA and antibacterial activities.

Keywords

References

  1. Christopher, G. D., Coffey, T. J. and Spratt, B. G. 1994. Origin and molecular epidemiology of penicillin-binding-protein-mediated resistance to ${\beta}$-lactam antibiotics. Trends Microbiol. 2, 361-366. https://doi.org/10.1016/0966-842X(94)90612-2
  2. Davis, S. L., Perri, M. B., Donabedian, S. M., Manierski, C., Singh, A., Vager, D., Haque, N. Z., Speirs, K., Muder, R. R., Robinson-Dunn, B., Hayden, M. K. and Zervos, M. J. 2007. Epidemiology and outcomes of community-associated methicillin-resistant Staphylococcus aureus. Infect. J. Clin. Microbiol. 45, 1705-1711.
  3. Dunbar, J., Ticknor, L. O. and Kuske, C. R. 2000. Assessment of microbial diversity in four Southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl. Environ. Microbiol. 66, 2943-2950. https://doi.org/10.1128/AEM.66.7.2943-2950.2000
  4. Faver, B., Hofbauer, B., Hildering, K. S. and Ryder, N. S. 2003. Comparison of in vitro activities of 17 antifungal drugs against a panel of 20 dermatophytes by using a microdilution assay. J. Clin. Microbial. 41, 4817-4819. https://doi.org/10.1128/JCM.41.10.4817-4819.2003
  5. Gordon, L. A. and Niemeyer, M. 1994. Origin and evolution of DNA associated with resistance to methicillin in Staphylococci. Trends Microbiol. 2, 343-3772. https://doi.org/10.1016/0966-842X(94)90608-4
  6. Grundmann, H., Aires-de-Sousa, M., Boyce, J. and Tiemersama, E. 2006. Emergence and resurgence of methicillin-resistant Staphylococcus aureus as a public-health threat. Lancet. 368, 874-885. https://doi.org/10.1016/S0140-6736(06)68853-3
  7. Gulder, T. A. and Moore, B. S. 2009. Chasing the treasures of the sea-bacterial marine natural products. Curr. Opin. Microbiol. 12, 252-260. https://doi.org/10.1016/j.mib.2009.05.002
  8. Hamann, M. T. and Scheuer, P. J. 1993. Kahalide F., a bioactive depsipeptide from the sacoglossan mollusk Elisia refescens and the green alga Bryopsis sp. J. Am. Chem. Soc. 115, 5825-1826. https://doi.org/10.1021/ja00066a061
  9. Hiramatsu, K. 2001. Vancomycin resistant Staphylococcus aureus: a new model of antibiotic resistance. J. Infect. Dis. 1, 1-16.
  10. Howden, B. P., Davies, J. K., Jonhson, P. D., Stinear, T. P. and Grayson, M. L. 2010. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate strains: resistanced mechanisms, laboratory detection, and clinical implications. Clin Microbiol. Rev. 23, 99-139. https://doi.org/10.1128/CMR.00042-09
  11. IMS health. 2009. IMS MIDAS.
  12. MacFaddin, J. F. 1980. Biochemical tests for identification of medical bacteria. (2nd eds), The Williams and Wilkins Co., Baltimore, pp 36-308.
  13. National Committee for Clinical Laboratory Standards. 2009. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard M07-A8. (8th ed), National Committee for Clinical Laboratory Standards, Wayne, PA.
  14. Ohnishi, Y., Yamazaki, H., Kato, J. Y., Tomono, A. and Horinouchi, S. 2005. AdpA, a central transcriptional regulator in the a-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci. Biotchnol. Biochem. 69, 431-439. https://doi.org/10.1271/bbb.69.431
  15. Proksch, P., Edrada, R. A. and Ebel, R. 2003. Drugs from the sea- opportunities and obstacles. Mar. Drugs. 1, 5-17. https://doi.org/10.3390/md101005
  16. Klevens, R. M., Edwards, J. R., Richards, C. L., Jr Horan, T. C., Gaynes, R. P., Pollock, D. A. and Cardo, D. M. 2007. Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep. 122, 160-166. https://doi.org/10.1177/003335490712200205
  17. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning, a laboratory manual. (2nd eds), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 25-28.
  18. Taga, N. 1968. Some ecological aspects of marine bacteri a in the Kuroshio current. Bull. Misaki Mar. Biol. Kyoto Univ. 12, 50-76.
  19. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: Molecular evolutionary gentics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28(10), 2731-3739. https://doi.org/10.1093/molbev/msr121