DOI QR코드

DOI QR Code

Influence of Reaction Parameters on Biocrude Production from Lipid-extracted Microalgae using Hydrothermal Liquefaction

열수액화를 이용한 미세조류 추출잔사로부터 바이오원유 제조에 대한 반응인자의 영향

  • Ryu, Young-Jin (National Marine Bioenergy R&D Consortium & Department of Biological Engineering, Inha University) ;
  • Shin, Hee-Yong (National Marine Bioenergy R&D Consortium & Department of Biological Engineering, Inha University) ;
  • Yang, Ji-Hyun (National Marine Bioenergy R&D Consortium & Department of Biological Engineering, Inha University) ;
  • Lee, Yunwoo (National Marine Bioenergy R&D Consortium & Department of Biological Engineering, Inha University) ;
  • Jeong, Injae (National Marine Bioenergy R&D Consortium & Department of Biological Engineering, Inha University) ;
  • Park, Hanwool (National Marine Bioenergy R&D Consortium & Department of Biological Engineering, Inha University) ;
  • Lee, Choul-Gyun (National Marine Bioenergy R&D Consortium & Department of Biological Engineering, Inha University)
  • 류영진 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과) ;
  • 신희용 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과) ;
  • 양지현 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과) ;
  • 이윤우 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과) ;
  • 정인재 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과) ;
  • 박한울 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과) ;
  • 이철균 (해양바이오에너지 생산기술개발연구센터 & 인하대학교 생물공학과)
  • Received : 2017.12.08
  • Accepted : 2017.12.22
  • Published : 2017.12.31

Abstract

Hydrothermal liquefaction of lipid-extracted Tetraselmis sp. feedstock containing 80 wt.% water was conducted in a batch reactor at different temperatures (300, 325, and $350^{\circ}C$) and reaction times (5, 10, 20, 40, and 60 min). The biocrude yield, elemental composition and higher heating value obtained at various reaction conditions were used to predict the optimum conditions for maximizing energy recovery of biocrude with good quality. A maximum energy recovery of 67.6% was obtained at $325^{\circ}C$ and 40 min with a high energy density of 31.8 MJ/kg and lower contents of nitrogen and oxygen. Results showed that reaction conditions of $325^{\circ}C$, 40 min was most suitable for maximizing energy recovery while at the same time achieving improved quality of biocrude.

Keywords

References

  1. Biller, P., Ross, A.B., 2011. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour. Technol. 102, 215-225. https://doi.org/10.1016/j.biortech.2010.06.028
  2. Biller, P., Ross, A.B., Skill, S.C., Lea-langton, A., Balasun daram, B., Hall, C., Riley, R., Llewellyn, C.A., 2012. Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Res. 1, 70-76. https://doi.org/10.1016/j.algal.2012.02.002
  3. Channiwala, S.A., Parikh, P.P., 2002. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81, 1051-1063. https://doi.org/10.1016/S0016-2361(01)00131-4
  4. Dale, S., 2017. BP Statistical Review of World Energy June 2017. London.
  5. Demirbas, A., Demirbas, M.F., 20110. Algae energy: Algae as a New Soure of Biodiesel. Springer Science & Business Media.
  6. Deng, X., Li, Y., Fei, X., 2009. Microalgae : A promising feedstock for biodiesel. African J. Microbiol. Res. 3, 1008-1014.
  7. Dismukes, G.C., Carrieri, D., Bennette, N., Ananyev, G. M., Posewitz, M.C., 2008. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotechnol. 19, 235-240. https://doi.org/10.1016/j.copbio.2008.05.007
  8. Eboibi, B.E., Lewis, D.M., Ashman, P.J., Chinnasamy, S., 2014. Effect of operating conditions on yield and quality of biocrude during hydrothermal liquefaction of halophytic microalga Tetraselmis sp. Bioresour. Technol. 170, 20-29. https://doi.org/10.1016/j.biortech.2014.07.083
  9. Ehimen, E.A., Sun, Z.F., Carrington, C.G., 2010. Variables affecting the in situ transesterification of microalgae lipids. Fuel 89, 677-684. https://doi.org/10.1016/j.fuel.2009.10.011
  10. Folch, J., Lees, M., Stanley, G.H.S., 1956. A simple method for the isolation and purification of total lipides from animal tissues.
  11. Georgianna, D.R., Stephen, P., 2012. Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488, 329-335. https://doi.org/10.1038/nature11479
  12. Gouveia, L., 2011. Microalgae as a Feedstock for Biofuels. Springer, Berlin, Heidelberg.
  13. Harman-Ware, A.E., Morgan, T., Wilson, M., Crocker, M., Zhang, J., Liu, K., Stork, J., Debolt, S., 2013. Microal gae as a renewable fuel source: Fast pyrolysis of Scenedesmus sp. Renew. Energy 60, 625-632. https://doi.org/10.1016/j.renene.2013.06.016
  14. Harun, R., Danquah, M.K., Forde, G.M., 2010. Microalgal biomass as a fermentation feedstock for bioethanol production. J. Chem. Technol. Biotechnol. 85, 199-203.
  15. Hidalgo, P., Toro, C., Ciudad, G., Navia, R., 2013. Advances in direct transesterification of microalgal biomass for biodiesel production. Rev. Environ. Sci. Bio/Technology 12, 179-199. https://doi.org/10.1007/s11157-013-9308-0
  16. Jena, U., Das, K.C., Kastner, J.R., 2011. Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresour. Technol. 102, 6221-6229. https://doi.org/10.1016/j.biortech.2011.02.057
  17. John, R.P., Anisha, G.S., Nampoothiri, K.M., Pandey, A., 2011. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102, 186-193. https://doi.org/10.1016/j.biortech.2010.06.139
  18. Kumar, G., Shobana, S., Chen, W.-H., Bach, Q.-V., Kim, S.-H., Atabani, A.E., Chang, J.-S., 2017. A review of thermochemical conversion of microalgal biomass for biofuels: chemistry and processes. Green Chem. 19, 44-67. https://doi.org/10.1039/C6GC01937D
  19. Lee, O.K., Kim, A.L., Seong, D.H., Lee, C.G., Jung, Y.T., Lee, J.W., Lee, E.Y., 2013. Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta. Bioresour. Technol. 132, 197-201. https://doi.org/10.1016/j.biortech.2013.01.007
  20. Maisashvili, A., Bryant, H., Richardson, J., Anderson, D., Wickersham, T., Drewery, M., 2015. The values of whole algae and lipid extracted algae meal for aquaculture. Algal Res. 9, 133-142. https://doi.org/10.1016/j.algal.2015.03.006
  21. Mariotti, F., Tome, D., Mirand, P.P., 2008. Converting Nitrogen into Protein - Beyond 6.25 and Jones Factors. Crit. Rev. Food Sci. Nutr. 48, 177-184. https://doi.org/10.1080/10408390701279749
  22. Miao, X., Wu, Q., 2006. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97, 841-846. https://doi.org/10.1016/j.biortech.2005.04.008
  23. Miao, X., Wu, Q., Yang, C., 2004. Fast pyrolysis of microalgae to produce renewable fuels. J. Anal. Appl. Pyrolysis 71, 855-863. https://doi.org/10.1016/j.jaap.2003.11.004
  24. Miller, G., Spoolman, S., 2007. Environmental science: problems, connections and solutions., 12th ed. Jack Carey, Belmont, CA.
  25. Patel, 2014. Environmental and economical effects of fossil fuels. J. Recent Res. Eng. Technol. 1.
  26. Pirt, S.J., 1986. The thermodynamic efficiency (quantum demand) and dynamics of photosynthetic growth. New Phytol. 102, 3-37. https://doi.org/10.1111/j.1469-8137.1986.tb00794.x
  27. Safi, C., Charton, M., Pignolet, O., 2013. Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. J. Appl. Phycol. 25, 523-529. https://doi.org/10.1007/s10811-012-9886-1
  28. Schenk, P.M., Thomas-hall, S.R., 2008. Second Generation Biofuels : High-Efficiency Microalgae for Biodiesel Production. BioEnergy Res. 1, 20-43. https://doi.org/10.1007/s12155-008-9008-8
  29. Shin, D., Bae, J., Cho, Y., Ryu, Y., Kim, Z., Lim, S., Lee, C., 2016. Isolation of new microalga, Tetraselmis sp. KCTC12236BP, and biodiesel production using its biomass. J. Mar. Biosci. Biotechnol. 8, 39-44. https://doi.org/10.15433/ksmb.2016.8.1.039
  30. Shuping, Z., Yulong, W., Mingde, Y., Kaleem, I., Chuna, L., Tong, J., 2010. Production and characterization of biooil from hydrothermal liquefaction of microalgae Dunalie lla tertiolecta cake. Energy 35, 5406-5411. https://doi.org/10.1016/j.energy.2010.07.013
  31. Tian, C., Li, B., Liu, Z., Zhang, Y., Lu, H., 2014. Hydrothermal liquefaction for algal biorefinery: A critical review. Renew. Sustain. Energy Rev. 38, 933-950. https://doi.org/10.1016/j.rser.2014.07.030
  32. Toor, S.S., Rosendahl, L., Rudolfb, A., 2011. Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy 36, 2328-2342. https://doi.org/10.1016/j.energy.2011.03.013
  33. Valdez, P.J., Nelson, M.C., Wang, H.Y., Lin, X.N., Savage, P.E., 2012. Hydrothermal liquefaction of Nannochloro psis sp.: Systematic study of process variables and analysis of the product fractions. Biomass and Bioenergy 46, 317-331. https://doi.org/10.1016/j.biombioe.2012.08.009
  34. Vardon, D.R., Sharma, B.K., Scott, J., Yu, G., Wang, Z., Schideman, L., Zhang, Y., Strathmann, T.J., 2011. Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Bioresour. Technol. 102, 8295-8303. https://doi.org/10.1016/j.biortech.2011.06.041
  35. Vardon, D.R., Sharma, B.K., Blazina, G. V, Rajagopalan, K., Strathmann, T.J., 2012. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour. Technol. 109, 178-187. https://doi.org/10.1016/j.biortech.2012.01.008
  36. Ward, A.J., Lewis, D.M., Green, F.B., 2014. Anaerobic digestion of algae biomass : A review. Algal Res. 5, 204-214. https://doi.org/10.1016/j.algal.2014.02.001
  37. Yu, G., Zhang, Y., Schideman, L., Funk, T., Wang, Z., 2011. Environmental Science Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae. Energy Environ. Sci. 4, 4587-4595. https://doi.org/10.1039/c1ee01541a