References
- Biller, P., Ross, A.B., 2011. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour. Technol. 102, 215-225. https://doi.org/10.1016/j.biortech.2010.06.028
- Biller, P., Ross, A.B., Skill, S.C., Lea-langton, A., Balasun daram, B., Hall, C., Riley, R., Llewellyn, C.A., 2012. Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Res. 1, 70-76. https://doi.org/10.1016/j.algal.2012.02.002
- Channiwala, S.A., Parikh, P.P., 2002. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81, 1051-1063. https://doi.org/10.1016/S0016-2361(01)00131-4
- Dale, S., 2017. BP Statistical Review of World Energy June 2017. London.
- Demirbas, A., Demirbas, M.F., 20110. Algae energy: Algae as a New Soure of Biodiesel. Springer Science & Business Media.
- Deng, X., Li, Y., Fei, X., 2009. Microalgae : A promising feedstock for biodiesel. African J. Microbiol. Res. 3, 1008-1014.
- Dismukes, G.C., Carrieri, D., Bennette, N., Ananyev, G. M., Posewitz, M.C., 2008. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotechnol. 19, 235-240. https://doi.org/10.1016/j.copbio.2008.05.007
- Eboibi, B.E., Lewis, D.M., Ashman, P.J., Chinnasamy, S., 2014. Effect of operating conditions on yield and quality of biocrude during hydrothermal liquefaction of halophytic microalga Tetraselmis sp. Bioresour. Technol. 170, 20-29. https://doi.org/10.1016/j.biortech.2014.07.083
- Ehimen, E.A., Sun, Z.F., Carrington, C.G., 2010. Variables affecting the in situ transesterification of microalgae lipids. Fuel 89, 677-684. https://doi.org/10.1016/j.fuel.2009.10.011
- Folch, J., Lees, M., Stanley, G.H.S., 1956. A simple method for the isolation and purification of total lipides from animal tissues.
- Georgianna, D.R., Stephen, P., 2012. Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488, 329-335. https://doi.org/10.1038/nature11479
- Gouveia, L., 2011. Microalgae as a Feedstock for Biofuels. Springer, Berlin, Heidelberg.
- Harman-Ware, A.E., Morgan, T., Wilson, M., Crocker, M., Zhang, J., Liu, K., Stork, J., Debolt, S., 2013. Microal gae as a renewable fuel source: Fast pyrolysis of Scenedesmus sp. Renew. Energy 60, 625-632. https://doi.org/10.1016/j.renene.2013.06.016
- Harun, R., Danquah, M.K., Forde, G.M., 2010. Microalgal biomass as a fermentation feedstock for bioethanol production. J. Chem. Technol. Biotechnol. 85, 199-203.
- Hidalgo, P., Toro, C., Ciudad, G., Navia, R., 2013. Advances in direct transesterification of microalgal biomass for biodiesel production. Rev. Environ. Sci. Bio/Technology 12, 179-199. https://doi.org/10.1007/s11157-013-9308-0
- Jena, U., Das, K.C., Kastner, J.R., 2011. Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresour. Technol. 102, 6221-6229. https://doi.org/10.1016/j.biortech.2011.02.057
- John, R.P., Anisha, G.S., Nampoothiri, K.M., Pandey, A., 2011. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102, 186-193. https://doi.org/10.1016/j.biortech.2010.06.139
- Kumar, G., Shobana, S., Chen, W.-H., Bach, Q.-V., Kim, S.-H., Atabani, A.E., Chang, J.-S., 2017. A review of thermochemical conversion of microalgal biomass for biofuels: chemistry and processes. Green Chem. 19, 44-67. https://doi.org/10.1039/C6GC01937D
- Lee, O.K., Kim, A.L., Seong, D.H., Lee, C.G., Jung, Y.T., Lee, J.W., Lee, E.Y., 2013. Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta. Bioresour. Technol. 132, 197-201. https://doi.org/10.1016/j.biortech.2013.01.007
- Maisashvili, A., Bryant, H., Richardson, J., Anderson, D., Wickersham, T., Drewery, M., 2015. The values of whole algae and lipid extracted algae meal for aquaculture. Algal Res. 9, 133-142. https://doi.org/10.1016/j.algal.2015.03.006
- Mariotti, F., Tome, D., Mirand, P.P., 2008. Converting Nitrogen into Protein - Beyond 6.25 and Jones Factors. Crit. Rev. Food Sci. Nutr. 48, 177-184. https://doi.org/10.1080/10408390701279749
- Miao, X., Wu, Q., 2006. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97, 841-846. https://doi.org/10.1016/j.biortech.2005.04.008
- Miao, X., Wu, Q., Yang, C., 2004. Fast pyrolysis of microalgae to produce renewable fuels. J. Anal. Appl. Pyrolysis 71, 855-863. https://doi.org/10.1016/j.jaap.2003.11.004
- Miller, G., Spoolman, S., 2007. Environmental science: problems, connections and solutions., 12th ed. Jack Carey, Belmont, CA.
- Patel, 2014. Environmental and economical effects of fossil fuels. J. Recent Res. Eng. Technol. 1.
- Pirt, S.J., 1986. The thermodynamic efficiency (quantum demand) and dynamics of photosynthetic growth. New Phytol. 102, 3-37. https://doi.org/10.1111/j.1469-8137.1986.tb00794.x
- Safi, C., Charton, M., Pignolet, O., 2013. Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. J. Appl. Phycol. 25, 523-529. https://doi.org/10.1007/s10811-012-9886-1
- Schenk, P.M., Thomas-hall, S.R., 2008. Second Generation Biofuels : High-Efficiency Microalgae for Biodiesel Production. BioEnergy Res. 1, 20-43. https://doi.org/10.1007/s12155-008-9008-8
- Shin, D., Bae, J., Cho, Y., Ryu, Y., Kim, Z., Lim, S., Lee, C., 2016. Isolation of new microalga, Tetraselmis sp. KCTC12236BP, and biodiesel production using its biomass. J. Mar. Biosci. Biotechnol. 8, 39-44. https://doi.org/10.15433/ksmb.2016.8.1.039
- Shuping, Z., Yulong, W., Mingde, Y., Kaleem, I., Chuna, L., Tong, J., 2010. Production and characterization of biooil from hydrothermal liquefaction of microalgae Dunalie lla tertiolecta cake. Energy 35, 5406-5411. https://doi.org/10.1016/j.energy.2010.07.013
- Tian, C., Li, B., Liu, Z., Zhang, Y., Lu, H., 2014. Hydrothermal liquefaction for algal biorefinery: A critical review. Renew. Sustain. Energy Rev. 38, 933-950. https://doi.org/10.1016/j.rser.2014.07.030
- Toor, S.S., Rosendahl, L., Rudolfb, A., 2011. Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy 36, 2328-2342. https://doi.org/10.1016/j.energy.2011.03.013
- Valdez, P.J., Nelson, M.C., Wang, H.Y., Lin, X.N., Savage, P.E., 2012. Hydrothermal liquefaction of Nannochloro psis sp.: Systematic study of process variables and analysis of the product fractions. Biomass and Bioenergy 46, 317-331. https://doi.org/10.1016/j.biombioe.2012.08.009
- Vardon, D.R., Sharma, B.K., Scott, J., Yu, G., Wang, Z., Schideman, L., Zhang, Y., Strathmann, T.J., 2011. Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Bioresour. Technol. 102, 8295-8303. https://doi.org/10.1016/j.biortech.2011.06.041
- Vardon, D.R., Sharma, B.K., Blazina, G. V, Rajagopalan, K., Strathmann, T.J., 2012. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour. Technol. 109, 178-187. https://doi.org/10.1016/j.biortech.2012.01.008
- Ward, A.J., Lewis, D.M., Green, F.B., 2014. Anaerobic digestion of algae biomass : A review. Algal Res. 5, 204-214. https://doi.org/10.1016/j.algal.2014.02.001
- Yu, G., Zhang, Y., Schideman, L., Funk, T., Wang, Z., 2011. Environmental Science Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae. Energy Environ. Sci. 4, 4587-4595. https://doi.org/10.1039/c1ee01541a