DOI QR코드

DOI QR Code

Characterization of Heterochlorella luteoviridis (Trebouxiaceae, Trebouxiophyceae) isolated from the Port of Jeongja in Ulsan, Korea

  • Kim, Kyeong Mi (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea) ;
  • Kang, Nam Seon (Marine Life-resources Management Department, National Marine Biodiversity Institute of Korea) ;
  • Jang, Hyeong Seok (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea) ;
  • Park, Joon Sang (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea) ;
  • Jeon, Byung Hee (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea) ;
  • Hong, Ji Won (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea)
  • Received : 2017.11.14
  • Accepted : 2017.12.06
  • Published : 2017.12.31

Abstract

A unicellular green alga was axenically isolated from the Port of Jeongja, Ulsan, Korea. Morphological, molecular, and biochemical analyses revealed that the isolate belonged to Heterochlorella luteoviridis. This is the first report of this species in Korea. The microalgal strain was named as H. luteoviridis MM0014 and its growth, lipid composition, and biomass properties were investigated. The strain thrived over a wide range of temperatures ($5-30^{\circ}C$) and withstood up to 0.5 M NaCl. The results of gas chromatography/mass spectrometry analysis showed that the isolate was rich in nutritionally important polyunsaturated fatty acids. Its major fatty acids were linoleic acid (35.6%) and ${\alpha}$-linolenic acid (16.2%). Thus, this indigenous marine microalga is a potential alternative source of ${\omega}3$ and ${\omega}6$ polyunsaturated fatty acids, which are currently obtained from fish and plant oils. Ultimate analysis indicated that the gross calorific value was $19.7MJ\;kg^{-1}$. In addition, the biomass may serve as an excellent animal feed because of its high protein content (51.5%). Therefore, H. luteoviridis MM0014 shows promise for applications in the production of microalgae-based biochemicals and biomass feedstock.

Keywords

References

  1. Arrigo, K. R. 2005. Marine microorganisms and global nutrient cycles. Nature 437, 349-355. https://doi.org/10.1038/nature04159
  2. Breuer, G., Evers, W. A. C., de Vree, J. H., Kleinegris, D. M. M., Martens, D. E., Wijffels, R. H. and Lamers, P. P. 2013 Analysis of fatty acid content and composition in microalgae. J. Vis. Exp. 80, e50628.
  3. Calder, P. C. 2010 Omega-3 fatty acids and inflammatory processes. Nutrients 2, 355-374. https://doi.org/10.3390/nu2030355
  4. Desbois, A. P. and Lawlor, K. C. 2013. Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus. Mar. Drugs 11, 4544-4557. https://doi.org/10.3390/md11114544
  5. Champenois, J, Marfaing, H. and Pierre, R. 2015 Review of the taxonomic revision of Chlorella and consequences for its food uses in Europe. J. Appl. Phycol. 27, 1845-1851. https://doi.org/10.1007/s10811-014-0431-2
  6. Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., Lee, D. J. and Chang, J. S. 2017. Microalgae biorefinery: High value products perspectives. Bioresour. Technol. 229, 53-62. https://doi.org/10.1016/j.biortech.2017.01.006
  7. Cloern, J. E., Foster, S. Q. and Kleckner, A. E. 2014. Phytoplankton primary production in the world's estuarine-coastal ecosystems. Biogeosciences 11, 2477-2501. https://doi.org/10.5194/bg-11-2477-2014
  8. Cuellar-Bermudez, S. P., Aguilar-Hernandez, I., Cardenas-Chavez, D. L., Ornelas-Soto, N., Romero-Ogawa, M. A. and Parra-Saldivar, R. 2015. Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb. Biotechnol. 8, 190- 209. https://doi.org/10.1111/1751-7915.12167
  9. Diprat, A. B., Menegol, T., Boelter, J. F., Zmozinski, A., Rodrigues Vale, M. G., Rodrigues, E., and Rech, R. 2017. Chemical composition of microalgae Heterochlorella luteoviridis and Dunaliella tertiolecta with emphasis on carotenoids. J. Sci. Food Agric. 97, 3463-3468. https://doi.org/10.1002/jsfa.8159
  10. Friedl, A., Padouvas, E., Rotter, H. and Varmuza, K. 2005. Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta 544, 191-198. https://doi.org/10.1016/j.aca.2005.01.041
  11. Gill, I. and Valivety, R. 1997. Polyunsaturated fatty acids, part 1: Occurrence, biological activities and applications. Trends Biotechnol. 15, 401-409. https://doi.org/10.1016/S0167-7799(97)01076-7
  12. Guedes, A. C., Amaro, H. M. and Malcata F. X. 2011. Microalgae as sources of high added-value compounds-a brief review of recent work. Biotechnol. Progr. 27, 597-613. https://doi.org/10.1002/btpr.575
  13. Guiry, M. D. and Guiry, G. M. 2017. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org (searched on 12 November 2017)
  14. Hutchins, D. A., Mulholland, M. R. and Fu, F. 2009. Nutrient cycles and marine microbes in a $CO_{2}$-enriched ocean. Oceanography 22, 128-145.
  15. Jaeschke, D. P., Menegol, T., Rech, R., Mercali, G. D. and Marczak, L. D. F. 2016. Carotenoid and lipid extraction from Heterochlorella luteoviridis using moderate electric field and ethanol. Process Biochem. 51, 1636-1643. https://doi.org/10.1016/j.procbio.2016.07.016
  16. Jang, H. S., Kang, N. S., Kim, K. M., Jeon, B. H., Park, J. S. and Hong, J. W. 2017. Description and application of a marine microalga Auxenochlorella protothecoides isolated from Ulleung-do. J. Life Sci. 27, 1152-1160.
  17. Leu, S. and Boussiba, S. 2014. Advances in the production of high-value products by microalgae. Ind. Biotechnol. 10, 169-183. https://doi.org/10.1089/ind.2013.0039
  18. Mehta, L. R. Dworkin, R. H. and Schwid, S. R. 2009. Polyunsaturated fatty acids and their potential therapeutic role in multiple sclerosis. Nat. Clin. Pract. Neurol. 5, 82-92.
  19. Neustupa, J., Nemcova, Y., Elias, M. and Skaloud, P. 2009. Kalinella bambusicola gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel coccoid Chlorella like subaerial alga from Southeast Asia. Phycol. Res. 57, 159-169. https://doi.org/10.1111/j.1440-1835.2009.00534.x
  20. Packaged Facts. 2012. The Global Market for EPA/DHA Omega-3 Products. Published online at: https://www.packagedfacts.com/Global-EPA-DHA-7145087/ (accessed on 12 November 2017).
  21. Pereira, H., Barreira, L., Figueiredo, F., Custodio, L., Vizetto-Duarte, C., Polo, C., Resek, E., Engelen, A. and Varela, J. 2012. Polyunsaturated fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications. Mar. Drugs 10, 1920-1935. https://doi.org/10.3390/md10091920
  22. Plaza, M., Herrero, M., Cifuentes, A. and Ibanez, E. 2009. Innovative natural functional ingredients from microalgae. J. Agric. Food Chem. 57, 7159-7170. https://doi.org/10.1021/jf901070g
  23. Pulz, O. and Gross, W. 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65, 635-648. https://doi.org/10.1007/s00253-004-1647-x
  24. Radwan, S. S. 1991. Sources of $C_{20}$-polyunsaturated fatty acids for biotechnological use. Appl. Microbiol. Biot. 35, 421-430.
  25. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. and Stanier, R. 1979. Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1-61.
  26. Ross, A. B., Jones, J. M., Kubacki, M. L. and Bridgeman, T. 2008. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour. Technol. 99, 6494-6504. https://doi.org/10.1016/j.biortech.2007.11.036
  27. Schirmer, A., Rude, M. A., Li, X., Popova, E. and Del Cardayre, S. B. 2010. Microbial biosynthesis of alkanes. Science 329, 559-562. https://doi.org/10.1126/science.1187936
  28. Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101, 87-96. https://doi.org/10.1263/jbb.101.87
  29. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
  30. Verbruggen, H., Ashworth, M., LoDuca, S. T., Vlaeminck, C., Cocquyt, E., Sauvage, T., Zechman, F. W., Littler, D. S., Littler, M. M., Leliaert, F. and DeClecrk, O. 2009. A multi-locus time-calibrated phylogeny of the siphonous green algae. Mol. Phylogenet. Evol. 50, 642-653. https://doi.org/10.1016/j.ympev.2008.12.018
  31. Vrablik, T. L. and Watts, J. L. 2013. Polyunsaturated fatty acid derived signaling in reproduction and development: insights from Caenorhabditis elegans and Drosophila melanogaster. Mol. Reprod. Dev. 80, 244-259. https://doi.org/10.1002/mrd.22167
  32. White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. and White, T.J. (eds), PCR protocols: a guide to methods and applications. Academic Press, San Diego, California, pp. 315-322.