과제정보
연구 과제 주관 기관 : Pukyong National University
참고문헌
- Analog Devices (2010), "Datasheet of AD5933", http://www.analog.com
- Annamdas, V.G.M., (2012), "Facts of piezo impedance technique in crack propagation studies for an engineering structure", Int. J. Aerosp. Sci., 1(2), 8-15.
- Ayres, J.W., Lalande, F., Chaudhry, Z. and Rogers, C.A. (1998), "Qualitative impedance-based health monitoring of civil infrastructures", Smart Mater. Struct., 7, 599-605. https://doi.org/10.1088/0964-1726/7/5/004
- Balageas, D., Fritzen, C.P. and Gueemes, A, (2006), "Structural health monitoring", Wiley-ISTE.
- Bhalla, S. and Soh, C.K. (2004), "Electromechanical impedance modeling for adhesively bonded piezotransducers", J. Intel. Mat. Syst. Str., 15(12), 955-972. https://doi.org/10.1177/1045389X04046309
- Bilgunde, P. and Bond, L.J. (2017), "Temperature dependence of electromechanical impedance based bondline integrity monitoring", Proceeding of SPIE, 10170, 1-11.
- Burgoyne, C.J. and Scantlebury, R.C. (2008), "Lessons learned from the bridge collapse in Palau", Proceeding of the Institution of Civil Engineers: Civil Engineering, 161, 28-34. https://doi.org/10.1680/cien.2008.161.6.28
- Chaudhry, Z., Joseph, T., Sun, F. and Rogers, C. (1995), "Local-area health monitoring of aircraft via piezoelectric actuator/sensor patches", Smart Structures and Integrated Systems, Proceedings of the SPIE, 2443, San Diego, CA.
- Fabricio G.B., Danilo E.B., Vinicius A.D.A. and Jose A.C.U. (2014), "An experimental study on the effect of temperature on piezoelectric sensors for impedance-based structural health monitoring", Sensors, 14, 1208-1227. https://doi.org/10.3390/s140101208
- Giurgiutiu, V. (2014), Structural health monitoring with piezoelectric wafer active sensors, 2nd Ed., Academic Press.
- Giurgiutiu, V. and Zagrai, A. (2002), "Embedded self-sensing piezoelectric active sensors for on-line structural identification", J. Vib. Acoust., 124, 116-125. https://doi.org/10.1115/1.1421056
- Giurgiutiu, V. and Zagrai, A. (2005), "Damage detection in thin plates and aerospace structures with the electro-mechanical impedance method", Struct. Health Monit., 4(2), 99-118. https://doi.org/10.1177/1475921705049752
- Ho, D.D, Ngo, T.M. and Kim, J.T. (2014), "Impedance-based damage monitoring of steel column connection: numerical simulation", Struct. Monit. Maint., 1(3), 339-356. https://doi.org/10.12989/SMM.2014.1.3.339
- Ho, D.D., Lee, P.Y., Nguyen, K.D., Hong, D.S., Lee, S.Y., Kim, J.T., Shin, S.W., Yun, C.B. and Shinozuka, M. (2012), "Solar-powered multi-scale sensor node on imote2 platform for hybrid SHM in cable-stayed bridge", Smart Struct. Syst., 9(2), 145-164. https://doi.org/10.12989/sss.2012.9.2.145
-
Hooker, M.W. (1998), "Properties of PZT-based piezoelectric ceramics between -150 and
$250^{\circ}C$ ", Technical Report NASA/CR-1998-208708, NASA, USA - Hou, J., Jankowski, L. and Ou, J. (2014), "Structural health monitoring based on combined structural global and local frequencies", Math. Problem. Eng., 1-13.
- Hu, X., Zhu, H. and Wang, D. (2014), "A study of concrete slab damage detection based on the electromechanical impedance method", Sensors, 14, 19897-19909. https://doi.org/10.3390/s141019897
- Hu, Y. and Yang, T. (2007), "Wave propagation modeling of the PZT sensing region for structural health monitoring", Smart Mater. Struct., 16, 706-716. https://doi.org/10.1088/0964-1726/16/3/018
- Huynh, T.C. (2017), "Wireless impedance-based structural health monitoring of civil structures using smart PZT interface technique", PhD Dissertation, Pukyong National University, Korea.
- Huynh, T.C. and Kim, J.T. (2014), "Impedance-based cable force monitoring in tendon-anchorage using portable PZT-interface technique", Math. Problem. Eng., 1-11.
- Huynh, T.C. and Kim, J.T. (2016), "Compensation of temperature effect on impedance responses of PZT interface for prestress-loss monitoring in PSC girders", Smart Struct. Syst., 17(6), 881-901. https://doi.org/10.12989/sss.2016.17.6.881
- Huynh, T.C. and Kim, J.T. (2017a), "Quantification of temperature effect on impedance monitoring via PZT interface for prestressed tendon anchorage", Smart Mater. Struct., 26(12), 1-19.
- Huynh, T.C. and Kim, J.T. (2017b), "Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique", Smart Struct. Syst., 20(2), 181-195. https://doi.org/10.12989/SSS.2017.20.2.181
- Huynh, T.C., Lee, K.S. and Kim, J.T. (2015a), "Local dynamic characteristics of PZT impedance interface on tendon anchorage under prestress force variation", Smart Struct. Syst., 15(2), 375-393. https://doi.org/10.12989/sss.2015.15.2.375
- Huynh, T.C., Nguyen, T.C., Choi, S.H. and Kim, J.T. (2016), "Impedance monitoring at tendon-anchorage via mountable PZT interface and temperature-effect compensation", Proceedings of SPIE, 9799, 1-6.
- Huynh, T.C., Park, J.H. and Kim, J.T. (2016b), "Structural identification of cable-stayed bridge under backto-back typhoons by wireless vibration monitoring", Measurement, 88, 385-401. https://doi.org/10.1016/j.measurement.2016.03.032
- Huynh, T.C., Park, Y.H., Park, J.H. and Kim, J.T. (2015b), "Feasibility verification of mountable PZTinterface for impedance monitoring in tendon-anchorage", Shock Vib., 1-11.
- Huynh, T.C., Park, Y.H., Park, J.H., Hong, D.S. and Kim, J.T. (2015c), "Effect of temperature variation on vibration monitoring of prestressed concrete structures", Shock Vib., 1-9.
- Kim, J.T., Huynh, T.C. and Lee, S.Y. (2014), "Wireless structural health monitoring of stay cables under two consecutive typhoons", Struct. Monit. Maint., 1(1), 47-67. https://doi.org/10.12989/SMM.2014.1.1.047
- Kim, J.T., Nguyen, K.D. and Huynh, T.C. (2013), "Wireless health monitoring of stay cable using piezoelectric strain response and smart skin technique", Smart Struct. Syst., 12(3-4), 381-379. https://doi.org/10.12989/sss.2013.12.3_4.381
- Kim, J.T., Park, J.H., Hong, D.S. and Park, W.S. (2010), "Hybrid health monitoring of prestressed concrete girder bridges by sequential vibration-impedance approaches", Eng. Struct., 32, 115-128. https://doi.org/10.1016/j.engstruct.2009.08.021
- Kim, J.T., Park, J.H., Hong, D.S. and Ho, D.D. (2011), "Hybrid acceleration-impedance sensor nodes on Imote2-platform for damage monitoring in steel girder connections", Smart Struct. Syst., 7(5), 393-416. https://doi.org/10.12989/sss.2011.7.5.393
- Kim, J.T., Yun, C.B. and Yi, J.H. (2003), "Temperature effects on frequency-based damage detection in plate-girder bridges", J. KSCE, 7(6), 725-733.
- Koo, K.Y, Park, S.H., Lee, J.J., and Yun, C.B. (2009), "Automated impedance-based structural health monitoring incorporating effective frequency shift for compensating temperature effects", J. Intel. Mat. Syst. Str., 20, 367-377. https://doi.org/10.1177/1045389X08088664
- Lee, S.B. (1996), "Fatigue failure of welded vertical members of a steel truss bridge", Eng. Fail. Anal., 3(2), 103-108. https://doi.org/10.1016/1350-6307(96)00003-9
- Liang, C., Sun, F.P. and Rogers, C.A. (1994), "Coupled electro-mechanical analysis of adaptive material -Determination of the actuator power consumption and system energy transfer", J. Intel. Mat. Syst. Str., 5, 12-20. https://doi.org/10.1177/1045389X9400500102
- Liang, C., Sun, F.P. and Rogers, C.A. (1996), "Electro-mechanical impedance modeling of active material systems", Smart Mater. Struct., 5(2), 171-186. https://doi.org/10.1088/0964-1726/5/2/006
- Lim, H.J., Kim, M.K., Sohn, H. and Park, C.Y. (2011), "Impedance-based damage detection under varying temperature and loading conditions", NDT&E Int., 44, 740-750. https://doi.org/10.1016/j.ndteint.2011.08.003
- Lim, Y.Y. and Soh, C.K. (2012), "Effect of varying axial load under fixed boundary condition on admittance signatures of electromechanical impedance technique", J. Intel. Mat. Syst. Str., 23(7), 815-826. https://doi.org/10.1177/1045389X12437888
- Lopes, V., Park, G., Cudney, H.H. and Inman, D.J. (2000), "Impedance-based structural health monitoring with artificial neural networks", J. Intel. Mat. Syst. Str., 11, 206-214. https://doi.org/10.1106/H0EV-7PWM-QYHW-E7VF
- Lynch, J.P., Sundararajan, A., Law, K.H., Kiremidjian, A.S., Kenny, T. and Carryer, E. (2003), "Embedment of structural monitoring algorithms in a wireless sensing unit", Struct. Eng. Mech., 15(3), 385-297.
- Mascarenas, D, Todd, M.D., Park, G. and Farrar, C.R. (2007), "Development of an impedance-based wireless sensor node for structural health monitoring", Smart Mater. Struct., 16(6), 2137-2145. https://doi.org/10.1088/0964-1726/16/6/016
- Min, J., Park, S. and Yun, C.B. (2010), "Impedance-based structural health monitoring using neural networks for autonomous frequency range selection", Smart Mater. Struct., 17(6), 1-10.
- Min, J., Park, S., Yun, C.B. and Song, B. (2010), "Development of a low-cost multifunctional wireless impedance sensor node", Smart Struct. Syst., 6(5-6), 689-709. https://doi.org/10.12989/sss.2010.6.5_6.689
- Min, J., Park, S., Yun, C.B., Lee, C.G. and Lee, G. (2012), "Impedance-based structural health monitoring incorporating neural network technique for identification of damage type and severity‟, Eng. Struct., 39, 210-220. https://doi.org/10.1016/j.engstruct.2012.01.012
- Min, J., Yi, J.H. and Yun, C.B. (2015), "Electromechanical impedance-based long-term SHM for jacket-type tidal current power plant structure", Smart Struct. Syst., 15(2), 283-297. https://doi.org/10.12989/sss.2015.15.2.283
- Nagayama, T. (2007), "Structural health monitoring using smart sensors", Ph.D. Dissertation, University of Illinois at Urbana-Champaign.
- National Transportation Safety Board (NTSB) (2008), "Highway accident report interstate 35W collapse over the Mississippi River Minneapolis, Minnesota, August 1, 2007". National Transportation Safety Board, NTSB/HAR-08/02, Washington, D.C.
- Nguyen, K.D. and Kim, J.T. (2012), "Smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection", Smart Struct. Syst., 9(6), 489-504. https://doi.org/10.12989/sss.2012.9.6.489
- Nguyen, K.D., Lee, S.Y., Lee, P.Y. and Kim, J.T. (2011), "Wireless SHM for bolted connections via multiple PZT-interfaces and Imote2-platformed impedance sensor node", Proceedings of the ANCRiSST 2011, Dalian, China, July 2011.
- Nguyen, T.C., Huynh, T.C., Yi, J.H. and Kim, J.T. (2017), "Hybrid bolt-loosening detection in wind turbine tower structures by vibration and impedance responses", Wind Struct., 24(4), 385-403. https://doi.org/10.12989/was.2017.24.4.385
- Park, G., Cudney, H. and Inman, D.J. (2000), "Impedance-based health monitoring of civil structural components", J. Infrastruct. Syst. - ASCE, 6(4), 153-160. https://doi.org/10.1061/(ASCE)1076-0342(2000)6:4(153)
- Park, G., Kabeya, K., Cudney, H. and Inman, D. (1999), "Impedance-based structural health monitoring for temperature varying applications", JSME Int. J. Series A Solid Mech. Mater. Eng., 42, 249-258. https://doi.org/10.1299/jsmea.42.249
- Park, G., Sohn, H., Farrar, C. and Inman, D. (2003), "Overview of piezoelectric impedance-based health monitoring and path forward", Shock Vib. Digest, 35(6), 451-463. https://doi.org/10.1177/05831024030356001
- Park, J.H. (2009), "Development of autonomous smart sensor nodes for hybrid structural health monitoring of large structures", Ph.D. Thesis, PKNU, Korea.
- Park, J.H., Huynh, T.C. and Kim, J.T. (2015), "Temperature effect on wireless impedance monitoring in tendon anchorage of prestressed concrete girder", Smart Struct. Syst., 15(4), 1159-1175. https://doi.org/10.12989/sss.2015.15.4.1159
- Park, J.H., Kim, J.T., Hong, D.S., Mascarenas, D. and Lynch, J.P. (2010), "Autonomous smart sensor nodes for global and local damage detection of prestressed concrete bridges based on accelerations and impedance measurements", Smart Struct. Syst., 6(5), 711-730. https://doi.org/10.12989/sss.2010.6.5_6.711
- Park, S., Park, G., Yun, C.B. and Farrar, C.R. (2008), "Sensor self-diagnosis using a modified impedance model for active sensing-based structural health monitoring", Structural Health Monitoring.
- Park, S., Shin, H.H. and Yun, C.B. (2009), "Wireless impedance sensor nodes for functions of structural damage identification and sensor self-diagnosis", Smart Mater. Syst., 18, 1-11.
- Perera, R., Perez, A., Garcia-Dieguez, M. and Zapico-Valle J.L. (2017), "Active wireless system for structural health monitoring applications", Sensors, 17, 1-16. https://doi.org/10.1109/JSEN.2017.2761499
- Piezo Systems (2011), http://www.piezo.com
- Priya, C.B., Reddy, A.L., Rao, G.V.R., Gopalakrishnan, N. and Rao, A.R.M. (2014), "Low frequency and boundary condition effects on impedance based damage identification", Case Studies in Nondestructive Testing and Evaluation, 2, 9-13. https://doi.org/10.1016/j.csndt.2014.05.001
- Rabelo D.S., Steffen, V., Neto, R.M.F. and Lacerda, H.B. (2017), "Impedance-based structural health monitoring and statistical method for threshold-level determination applied to 2024-T3 aluminum panels under varying temperature", Struct. Health Monit., 16(4), 1-17.
- Raju, V. (1998), "Implementing impedance-based health monitoring technique", Master Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
- Ritdumrongkul, S., Abe, M., Fujino, Y. and Miyashita, T. (2004), "Quantitative health monitoring of bolted joints using a piezoceramic actuator-sensor", Smart Mater. Struct., 13, 20-29. https://doi.org/10.1088/0964-1726/13/1/003
- Ryu, J.Y., Huynh, T.C. and Kim, J.T. (2017), "Experimental investigation of magnetic-mount PZT-interface for impedance-based damage detection in steel girder connection", Struct. Monit. Maint., 4(3), 237-253 https://doi.org/10.12989/SMM.2017.4.3.237
- Sepehry, N., Shamshirsaz, M. and Abdollahi, F. (2011), "Temperature variation effect compensation in impedance-based structural health monitoring using neural networks", J. Intel. Mat. Syst. Str., 20(10), 1-8.
- Siebel, T. and Lilov, M. (2013), "Experimental investigation on improving electromechanical impedance based damage detection by temperature compensation", Key Eng. Mater., 569-570, 1132-1139. https://doi.org/10.4028/www.scientific.net/KEM.569-570.1132
- Sodano, H.A., Park, G. and Inman, D.J. (2004), "An investigation into the performance of macro-fiber composites for sensing and structural vibration applications", Mech. Syst. Signal Pr., 18, 683-697. https://doi.org/10.1016/S0888-3270(03)00081-5
- Soh, C.K., Tseng, K.K., Bhalla, S. and Gupta, A. (2000), "Performance of smart piezoceramic patches in health monitoring of a RC bridge", Smart Mater. Struct., 9, 533-542. https://doi.org/10.1088/0964-1726/9/4/317
- Sohn, H. (2007) "Effects of environmental and operational variability on structural health monitoring", Philos. T. R. Soc. A, 365, 539-560. https://doi.org/10.1098/rsta.2006.1935
- Spencer, B.F., Ruiz-Sandoval, M.E. and Kurata, N. (2004), "Smart sensing technology: opportunities and challenges", Struct. Control Health Monit., 11, 349-368. https://doi.org/10.1002/stc.48
- Stokes, J. P., and Cloud, G.L. (1993), "The application of interferometric techniques to the nondestructive inspection of fiber-reinforced materials", Exper. Mech., 33, 314-319. https://doi.org/10.1007/BF02322147
- Studer, M. and Peters, K. (2004), "Multiscale sensing for damage identification", Smart Mater. Struct., 13(2), 283-294. https://doi.org/10.1088/0964-1726/13/2/006
- Sun, F.P., Chaudhry Z., Liang, C. and Rogers C.A. (1995), "Truss structure integrity identification using PZT sensor-actuator", J. Intel. Mat. Syst. Str., 6, 134-139. https://doi.org/10.1177/1045389X9500600117
- Tibaduiza, D.A., Mujica, L.E. and Rodellar, J. (2013), "Damage classification in structural health monitoring using principle component analysis and self-organizing maps", Struct. Control Health Monit., 20, 1303-1316. https://doi.org/10.1002/stc.1540
- Wang, D., Wang. Q., Wang, H. and Zhu H. (2016), "Experimental study on damage detection in timber specimens based on an electromechanical impedance technique and RMSD-based Mahalanobis distance", Sensors, 1-17.
- Woon, C.E. and Mitchell, L.D. (1996), "Variations in structural dynamic characteristics caused by changes in ambient temperature: Part I. Experimental", Proceeding of the 14th IMAC, SEM, 963-971.
- Yang, J., Zhu, H., Wang, D. and Ai, D. (2015), "The compensation technique of tensile force effect on the electro-mechanical impedance method for structural health monitoring", J. Intel. Mat. Syst. Str., 1-12.
- Yang, Y. and Miao, A. (2010), "Two-dimensional modeling of the effects of external vibration on the PZT impedance signatures", Smart Mater. Struct., 19, 1-7.
- Yang, Y., Annamdas, V.G.M., Wang, C. and Zhou, Y. (2008), "Application of multiplexed FBG and PZT impedance sensors for health monitoring of rocks", Sensors, 8, 271-289. https://doi.org/10.3390/s8010271
- Yun, C.; Cho, S.; Park, H.; Min, J. and Park, J. (2013), "Smart wireless sensing and assessment for civil infrastructure", Struct. Infrastruct. Eng. Maint. Manag. Life-Cycle Design Perform., 10(4), 534-550.
- Zagrai, A.N. and Giurgiutiu, V. (2001), "Electro-mechanical impedance method for crack detection in thin plates", J. Intelligent Material Systems and Structures, 12, 709-718. https://doi.org/10.1177/104538901320560355
- Zahedi, F. and Huang, H. (2017), "Time-frequency analysis of electromechanical impedance (EMI) signature for physics-based damage detections using piezoelectric wafer active sensor (PWAS)", Smart Mater. Struct., 26, 1-9.
피인용 문헌
- Feasibility study of a touch-enabled active sensing approach to inspecting subsea bolted connections using piezoceramic transducers vol.29, pp.8, 2020, https://doi.org/10.1088/1361-665x/ab84ba
- Understanding Impedance Response Characteristics of a Piezoelectric-Based Smart Interface Subjected to Functional Degradations vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/5728679
- Development of Smart Sensing Technology Approaches in Structural Health Monitoring of Bridge Structures vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/2615029
- Review of Current Guided Wave Ultrasonic Testing (GWUT) Limitations and Future Directions vol.21, pp.3, 2017, https://doi.org/10.3390/s21030811
- Anchor Force Monitoring Using Impedance Technique with Single-Point Mount Lead-Zirconate-Titanate Interface: A Feasibility Study vol.11, pp.9, 2017, https://doi.org/10.3390/buildings11090382