References
- Abbas, S., Kazmi, S.M.S. and Munir, M.J. (2017), "Potential of rice husk ash for mitigating the alkali-silica reaction in mortar bars incorporating reactive aggregates", Constr. Build. Mater., 132, 61-70. https://doi.org/10.1016/j.conbuildmat.2016.11.126
- ACI 221 (1998), State-of-the-Art Report on Alkali-Aggregate Reactivity, American Concrete Institute, Detroit, U.S.A.
- Afshinnia, K. and Rangaraju, P. (2015), "Efficiency of ternary blends containing fine glass powder in mitigating alkali-silica reaction", Constr. Build. Mater., 100, 234-245. https://doi.org/10.1016/j.conbuildmat.2015.09.043
- Ansah, J.S., Atiemo, E., Boakye, K.A., Adjei, D. and Adjaottor, A.A. (2014), "Calcined clay pozzolan as an admixture to mitigate the alkali-silica reaction in concrete", J. Mater. Sci. Chem. Eng., 2, 20-26.
- Aquino, W., Lange, D.A. and Olek, J. (2001), "The influence of metakaolin and silica fume on the chemistry of alkali-silica reaction products", Cement Concrete Compos., 23(6), 485-493. https://doi.org/10.1016/S0958-9465(00)00096-2
- ASTM C 1260 (2007), Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method), Annual Book of ASTM Standards, U.S.A.
- ASTM C 1567 (2011), Standard Test Method for Determining the Potential Alkali-silica reactivity of Combinations Materials of Aggregate (Accelerated Mortar Bar Method), Annual Book of ASTM Standards, U.S.A.
- Bagel, L. (1998), "Strength and pore structure of ternary blended cement mortars containing blast furnace slag and silica fume", Cement Concrete Res., 28(7), 1011-1022. https://doi.org/10.1016/S0008-8846(98)00078-7
- Baingam, L., Nawa, T., Iwatsuki, E. and Awamura, T. (2015), "ASR formation of reactive chert in conducting model experiments at highly alkaline and temperature conditions", Constr. Build. Mater., 95, 820-831. https://doi.org/10.1016/j.conbuildmat.2015.07.179
- Bhatty, M.S.Y. (1985), "Mechanism of pozzolanic reactions and control of alkali-aggregate expansion", Cement Concrete Aggr., 7, 69-77. https://doi.org/10.1520/CCA10372J
-
Chatterji, S., Thaulow, N., Jensen, A.D. and Christensen, P. (1986), "Mechanism of accelerating effects of NACI and
$Ca(OH)_2$ on alkali-silica reaction", Proceeding of the 7th International Conference on Concrete Alkali-Aggregate Reactions. - Cyr, M., Carles-Gibergues, M., Moisson, M. and Ringot, E. (2009), "Mechanism of ASR reduction by reactive aggregate powders", Adv. Cement Res., 21(4), 147-158. https://doi.org/10.1680/adcr.2008.00012
- Davraz, M. and Gunduz, L. (2008), "Reduction of alkali-silica reaction risk in concrete by natural (micronized) amorphous silica", Constr. Build. Mater., 22, 1093-1099. https://doi.org/10.1016/j.conbuildmat.2007.03.002
- Detwiler, R. (1997), The Role of Fly Ash Composition in Reducing Alkali-Silica Reaction, PCA R&D Serial No. 2092.
- Dongxue, L., Xinhua, F., Xuenquan, W. and Mingshu, T. (1997), "Durability study of steel slag cement", Cement Concrete Res., 27(7), 983-987. https://doi.org/10.1016/S0008-8846(97)00084-7
- Duchesne, J. and Berube, M.A. (1994a), "Available alkalies from supplementary cementing materials" ACI Mater. J., 91(3), 289-299.
- Duchesne, J. and Berube, M.A. (1994b), "The effectiveness of supplementary cementing materials in suppressing expansion due to asr; another look at the reaction mechanism. Part 2: Pore solution chemistry", Cement Concrete Res., 24(2), 221-230. https://doi.org/10.1016/0008-8846(94)90047-7
- Gaze, M.E. and Nixon, P.J. (1983), "The effect of pfa upon alkaliaggregate reaction", Mag. Concrete Res., 35(123), 107-110. https://doi.org/10.1680/macr.1983.35.123.107
- Helmuth, R. (1993), Alkali-Silica Reactivity: An Overview of Research, SHRP Report C-342, Purdue University, U.S.A.
- Hill, E.D. (1996), "Alkali limits for prevention of alkali-silica reaction: A brief review of their development", Cement Concrete Aggr., 18(1), 3-7. https://doi.org/10.1520/CCA10305J
- Kandasamy, S. and Shehata, M.H. (2014), "The capacity of ternary blends containing slag and high-calcium fly ash to mitigate alkali silica reaction", Cement Concrete Compos., 49, 92-99. https://doi.org/10.1016/j.cemconcomp.2013.12.008
- Lane, D.S. (1994), Alkali-Silica Reactivity in Virginia, VTRC 94-R17, University of Virginia Charlottesville, U.S.A.
- Lane, D.S. and Ozyildirim, C. (1999), "Preventive measures for alkali-silica reactions (binary and ternary systems)", Cement Concrete Res., 29, 1281-1288. https://doi.org/10.1016/S0008-8846(98)00242-7
- Latifee, E.R. (2016), "State of the art-report on alkali-silica reactivity mitigation effectiveness using different types of fly ashes", J. Mater., 1-7.
- Mindness, S. and Young, J.F. (1981), Concrete, Prentice-Hall, New Jersey, U.S.A.
- Moser, R.D., Jayapalan, A.R., Garas, V.Y. and Kurtis, K.E. (2010), "Assessment of binary and ternary blends of metakaolin and class C fly ash for alkali-silica reaction mitigation in concrete", Cement Concrete Res., 40, 1664-1672. https://doi.org/10.1016/j.cemconres.2010.08.006
- Neville, A.M. (1997), Properties of Concrete, John Wiley & Sons, New York, U.S.A.
- Neville, A.M. and Brooks, J.J. (1991), Concrete Technolgy, Longman Scientific & Technical, U.S.A.
- Ramachandran, V.S. (1998), "Alkali-aggregate expansion inhibiting admixtures", Cement Concrete Res., 20, 149-161. https://doi.org/10.1016/S0958-9465(97)00072-3
- Ramlochan, T., Thomas, M. and Gruber, K.A. (2000), "The effect of metakaolin on alkali-silica reaction in concrete", Cement Concrete Res., 30(3), 339-344. https://doi.org/10.1016/S0008-8846(99)00261-6
- Shafaatian, S.M.H., Akhavan, A., Maraghecni, H and Rajabiour, F. (2013), "How does fly ash mitigate alkali-silica reaction in accelerated mortar bar test?", Cement Concrete Compos., 37, 143-153. https://doi.org/10.1016/j.cemconcomp.2012.11.004
- Shayan, A., Diggings, R. and Ivanusec, I. (1996), "Effectiveness of fly ash in preventing deleterious expansion due to alkaliaggregate reaction in normal and steam-cured concrete", Cement Concrete Res., 26(1), 153-164. https://doi.org/10.1016/0008-8846(95)00191-3
- Shehata, M.H. and Thomas, M.D.A. (2002), "Use of ternary blends containing silica fume and fly ash to suppress expansion due to alkali-silica reaction in concrete", Cement Concrete Res., 32(3), 341-349. https://doi.org/10.1016/S0008-8846(01)00680-9
- Shehata, M.H. and Thomas, M.D.A. (2006), "Alkali release characteristics of blended cements", Cement Concrete Res., 36(6), 1161-1175.
- Shehata, M.H. "Effect of fly ash and silica fume on alkali-silica reaction in concrete", Ph.D. Dissertation, University of Toronto, Canada.
- Shehata, M.H. and Thomas, M.D.A. (2000), "The effect of fly ash composition on the expansion of concrete due to alkali-silica reaction", Cement Concrete Res., 30(7), 1063-1072. https://doi.org/10.1016/S0008-8846(00)00283-0
- Stanton, T.E. (1940), "Expansion of concrete through reaction between cement and aggregate", Proc. Am. Soc. Civil Eng., 66(10), 1781-1811.
- Thomas, M., Dunster, A., Nixon, P. and Blackwell, B. (2011), "Effect of fly ash on the expansion of concrete due to alkalisilica reaction-exposure site studies", Cement Concrete Compos., 33, 359-367. https://doi.org/10.1016/j.cemconcomp.2010.11.006
- Thomas, M.D.A. (1940), "Field studies of fly ash concrete structures containing reactive aggregates", Mag. Concrete Res., 48, 265-279.
- Vayghan, A.G., Wright, J.R. and Rajabipour, F. (2016), "An extended chemical index model to predict the fly ash dosage necessary for mitigating alkali-silica reaction in concrete", Cement Concrete Res., 82, 1-10. https://doi.org/10.1016/j.cemconres.2015.12.014
- Xu, G.J.Z., Watt, D.F. and Hudec, P.P. (1995), "Effectiveness of mineral admixtures in reducing asr expansion", Cement Concrete Res., 25(7), 1225-1236. https://doi.org/10.1016/0008-8846(95)00115-S
- Zahira, K. and Aissa, A. (2015), "Modelling the alkali-aggregate reaction expansion in concrete", Comput. Concrete, 16(1), 37-48. https://doi.org/10.12989/cac.2015.16.1.037
Cited by
- Pozzolanic properties of trachyte and rhyolite and their effects on alkali-silica reaction vol.11, pp.4, 2017, https://doi.org/10.12989/acc.2021.11.4.299