Acknowledgement
Grant : Innovative complex system solution for energy-saving residential buildings of a high comfort class in an unique prefabricated technology and assembly of composite panels
Supported by : National Centre of Research and Development NCBR
References
- Abaqus (2004), Theory Manual, Version 5.8, Hibbit, Karlsson & Sorensen Inc.
- Bazant, Z.P. and Jirasek, M. (2002), "Non-local integral formulations of plasticity and damage: Survey of progress", J. Eng. Mech., 128(11), 1119-1149. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119)
- Bazant, Z.P., Le, J.L. and Hoover, C. (2010), "Nonlocal boundary layer model: overcoming boundary condition problems in strength statistics and fracture anslysis of quasibrittle materials", Proceedings of the Fracture Mechanics of Concrete and Concrete Structures, Jeju Island, Korea.
- Bobinski, J. and Tejchman J. (2004), "Numerical simulations of localization of deformation in quasi-brittle materials within nonlocal softening plasticity", Comput. Concrete, 1(4), 1-22. https://doi.org/10.12989/cac.2004.1.1.001
- Borino, G., Failla, B. and Parrinello, F. (2003), "A symmetric nonlocal damage theory", J. Sol. Struct., 40(13), 3621-3645. https://doi.org/10.1016/S0020-7683(03)00144-6
- Brinkgreve, R.B.J. (1994), "Geomaterial models and numerical analysis of softening", Ph.D. Dissertation, Delft University of Technology, the Netherlands.
- Carol, I. and Willam, K. (1996), "Spurious energy dissipation/generation in stiffness recovery models for elastic degradation and damage", J. Sol. Struct., 33(20-22), 2939-2957. https://doi.org/10.1016/0020-7683(95)00254-5
- CEB-FIP Model Code (1990), Concrete Structures, 228, 1-205.
- Chen, J.F., Morozov, E.V. and Shankar, K. (2012), "A combined elastoplastic damage model for progressive failure analysis of composite materials and structures", Compos. Struct., 94(12), 3478-3489. https://doi.org/10.1016/j.compstruct.2012.04.021
- De Luca, A., Zadeh, H. and Nanni, A. (2014), "In situ load testing of a one-way reinforced concrete slab per the ACI 437 standard", J. Perform. Constr. Facil., 28(5), 04014022. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000441
- Den Uijl, J.A. and Bigaj, A.J. (1996), "A bond model for ribbed bars based on concrete confinement", Heron, 41(3), 201-226.
- Dorr, K. (1980), "Ein beitag zur berechnung von stahlbetonscheiben unter berucksichtigung des verbundverhaltens", Ph.D. Dissertation, Darmstadt University.
- Dulude, C., Ahmed, E., El-Gamal, S. and Benmokrane, B. (2011), "Testing of large-scale two-way concrete slabs reinforced with GFRP Bars", Proceedings of the 5th International Conference on FRP Composites in Civil Engineering, Beijing, China, September.
- Eligehausen, R., Popov, E.P. and Bereto, V.V. (1982), "Local bond stress-slip relationships of deformed bars under generalized excitations", Proceedings of the 7th European Conference on Earthquake Engineering, Athens.
- Etse, G. and Willam, K. (1994), "Fracture energy formulation for inelastic behavior of plain concrete", J. Eng. Mech., 120(9), 1983-2011. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:9(1983)
- Eurocode 2: PN-EN (1992), Design of Concrete Structures-Part 1: General Rules and Rules for Buildings.
- Faria, R., Oliver, J. and Cervera, M. (1998), "A strain-based plastic viscous-damage model for massive concrete structures", J. Sol. Struct., 35(14), 1533-1558. https://doi.org/10.1016/S0020-7683(97)00119-4
- Feenstra, P.H. and De Borst, R. (1996), "A composite plasticity model for concrete", J. Sol. Struct., 33(5), 707-730. https://doi.org/10.1016/0020-7683(95)00060-N
- Gabet, T., Malecot, Y. and Daudeville, L. (2008), "Triaxial behaviour of concrete under high stresses: Influence of the loading path on compaction and limit states", Cement Concrete Res., 38(3), 403-412. https://doi.org/10.1016/j.cemconres.2007.09.029
- Geers, M.G.D. (1997), "Experimental analysis and computational modeling of damage and fracture", Ph.D. Dissertation, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Giry, C., Dufour, F. and Mazars, J. (2011), "Stress-based nonlocal damage model", J. Sol. Struct., 48(25), 3431-3443. https://doi.org/10.1016/j.ijsolstr.2011.08.012
- Grassl, P., Xenos, D., Nystrom, U., Rempling, R. and Gylltoft, K. (2013), "CDPM2: A damage-plasticity approach to modelling the failure of concrete", J. Sol. Struct., 50, 3805-3816. https://doi.org/10.1016/j.ijsolstr.2013.07.008
- Haskett, M., Pehlers, D.J. and Mohamed Ali, M.S. (2008), "Local and global bond characteristics of steel reinforcing bars", Eng. Struct., 30(2), 376-383. https://doi.org/10.1016/j.engstruct.2007.04.007
- Korol, E. Tejchman, J. and Mroz, Z. (2014), "FE analysis of size effects in reinforced concrete beams without shear reinforcement based on stochastic elasto-plasticity with nonlocal softening", Fin. Elem. Analy. Des., 88, 25-41. https://doi.org/10.1016/j.finel.2014.05.005
- Korol, E. Tejchman, J. and Mroz, Z. (2017), "Experimental and numerical assessment of size effect in geometrically similar slender concrete beams with basalt reinforcement", Eng. Struct., 141, 272-291. https://doi.org/10.1016/j.engstruct.2017.03.011
- Krajcinovic, D. and Fonseka, G. (1981), "The continuous damage theory of brittle materials", J. Appl. Mech., 48(4), 809-824. https://doi.org/10.1115/1.3157739
- Lantsoght, E., Van Der Veen, C. and Walraven, J. (2010), "Shear tests of reinforced concrete slabs with concentrated loads near to supports", Proceedings of the 8th FIB Ph.D. Symposium in Kgs. Lyngby, Denmark.
- Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
- Lorrain, M., Maurel, O. and Seffo, M. (1998), "Cracking behaviour of reinforced high-strength concrete tension ties", ACI Struct. J., 95(5), 626-635.
- Lowes, L.N., Moehle, J.P. and Govindjee, S. (2004), "Concretesteel bond model for use in finite element modeling of reinforced concrete structures", ACI Struct. J., 101(4), 501-511.
- Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plasticdamage model for concrete", J. Sol. Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
- Mahnken, R. and Kuhl, E. (1999), "Parameter identification of gradient enhanced damage models", Eur. J. Mech. A/Sol., 18(5), 819-835. https://doi.org/10.1016/S0997-7538(99)00127-8
- Majewski, T., Bobinski, J. and Tejchman, J. (2008), "FE-analysis of failure behaviour of reinforced concrete columns under eccentric compression", Eng. Struct., 30(2), 300-317. https://doi.org/10.1016/j.engstruct.2007.03.024
- Malvar, L.J. (1992), "Bond reinforcement under controlled confinement", ACI Mater. J., 96(6), 593-601.
- Marzec, I. and Tejchman, J. (2012), "Enhanced coupled elastoplastic-damage models to describe concrete behaviour in cyclic laboratory tests: Comparison and improvement", Arch. Mech., 64(3), 227-259.
- Marzec, I., Bobinski, J. and Tejchman, J. (2007), "Simulations of crack spacing in reinforced concrete beams using elasticplasticity and damage with non-local softening", Comput. Concrete, 4(5), 377-403. https://doi.org/10.12989/cac.2007.4.5.377
- Marzec, I., Skarzynski, L., Bobinski, J. and Tejchman, J. (2013), "Modelling reinforced concrete beams under mixed sheartension failure with different continuous FE approaches", Comput. Concrete, 12(5), 585-612. https://doi.org/10.12989/cac.2013.12.5.585
- Mazars, J. (1986), "A description of micro- and macroscale damage of concrete structures", Eng. Fract. Mech., 25(5-6), 729-737. https://doi.org/10.1016/0013-7944(86)90036-6
- Mihai, I.C., Jefferson, A.D. and Lyons, P. (2016), "A plasticdamage constitutive model for the finite element analysis of fibre reinforced concrete", Eng. Fract. Mech., 159, 35-62. https://doi.org/10.1016/j.engfracmech.2015.12.035
- Nielsen, M.P. and Brae strup, M. (1976), W. Plastic Shear Strength of Reinforced Concrete Beams, Report R 73, University of Denmark.
- Pamin, J. and De Borst, R. (1999), "Stiffness degradation in gradient-dependent coupled damage-plasticity", Arch. Mech., 51(3-4), 419-446.
- Peerlings, R.H.J., De Borst, R., Brekelmans, W.A.M. and Geers, M.G.D. (1998), "Gradient enhanced damage modelling of concrete fracture", Mech. Cohes.-Frict. Mater., 3(4), 323-342. https://doi.org/10.1002/(SICI)1099-1484(1998100)3:4<323::AID-CFM51>3.0.CO;2-Z
- Pijauder-Cabot, G. and Bazant, Z.P. (1987), "Non-local damage theory", ASCE J. Eng. Mech., 113, 1512-1533. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1512)
- Pijauder-Cabot, G. and Dufour, F. (2010), "Non-local damage model boundary and evolving boundary effects", Eur. J. Environ. Civil Eng., 14(6-7), 729-749.
- Polish Standard (2002), PN-B-03264.
- Polizzotto, C, Borino, G. and Fuschi, P. (1998), "A thermodynamically consistent formulation of nonlocal and gradient plasticity", Mech. Res. Commun., 25(1), 75-82. https://doi.org/10.1016/S0093-6413(98)00009-3
- Rehm, G. and Eligehausen R. (1979), "Bond of ribbed bars under high cycle repeated loads", J. Am. Concrete Inst., 297-309.
- Saouridis, C. and Mazars, J. (1992), "Prediction of the failure and size effect in concrete via a bi-scale damage approach", Eng. Comput., 9(3), 329-344. https://doi.org/10.1108/eb023870
- Sewaco System, Patent Implementations, PCT/PL2012/000076, P.396140, P.400541, P.400558.
- Simo, J.C. and Ju, J. (1987), "Strain- and stress-based continuum damage models-I. Formulation", J. Sol. Struct., 23(7), 821-840. https://doi.org/10.1016/0020-7683(87)90083-7
- Skarzynski, L, Syroka, E. and Tejchman, J. (2011), "Measurements and calculations of the width of fracture process zones on the surface of notched concrete beams", Strain, 47(s1), 319-332. https://doi.org/10.1111/j.1475-1305.2008.00605.x
- Skarzynski, L. and Tejchman, J. (2010), "Calculations of fracture process zones on meso-scale in notched concrete beams subjected to three-point bending", Eur. J. Mech./A Sol., 29(4), 746-760. https://doi.org/10.1016/j.euromechsol.2010.02.008
- Skarzynski, L. and Tejchman, J. (2013), "Experimental investigations of fracture process in plain and reinforced concrete beams under bending", Strain, 49(6), 521-543. https://doi.org/10.1111/str.12064
- Smakosz, L. and Tejchman, J. (2014), "Evaluation of strength, deformability and failure mode of composite structural insulated panels", Mater. Des., 54, 1068-1082. https://doi.org/10.1016/j.matdes.2013.09.032
- Syroka-Korol, E. and Tejchman, J. (2014), "Experimental investigations of size effect in reinforced concrete beams failing by shear", Eng. Struct., 58, 63-78. https://doi.org/10.1016/j.engstruct.2013.10.012
- Tejchman, J. and Bobinski, J. (2012), Continuous and Discontinuous Modeling of Fracture in Concrete Using FEM, Springer, Berlin-Heidelberg.
- Website: www.sewaco.pl.
- Willam, K.J. and Warnke, E.P. (1975), "Constitutive model for the triaxial behavior of concrete", Proceedings of the Concrete Structures Subjected to Triaxial Stresses, Begamo, Italy.
- Xotta, G., Beizaee, S. and Willam, K.J. (2016), "Bifurcation investigations of coupled damage-plasticity models for concrete materials", Comput. Meth. Appl. Mech. Eng., 298, 428-452. https://doi.org/10.1016/j.cma.2015.10.010
- Zhang, J.P. (1994), Strength of Cracked Concrete. Part 1: Shear Strength of Conventional Reinforced Concrete Beams, Deep Beams, Corbels and Prestressed Reinforced Concrete Beams without Shear Reinforcement, Report of Technical University of Denmark, Lungby Denmark.
Cited by
- Numerical analyses of novel prefabricated structural wall panels in residential buildings based on laboratory tests in scale 1:1 vol.24, pp.9, 2017, https://doi.org/10.1080/19648189.2018.1474382
- Torsional behavior of reinforced concrete plates under pure torsion vol.28, pp.3, 2021, https://doi.org/10.12989/cac.2021.28.3.311