Acknowledgement
Supported by : King Fahd University of Petroleum and Minerals (KFUPM), King Abdulaziz City for Science and Technology (KACST)
References
- Aticin, U. (2011), "Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network", Exp. Syst. Appl., 38(8), 9609-9618. https://doi.org/10.1016/j.eswa.2011.01.156
- Awwad, M.T. (2004), "Developing a forecasting model of concrete compressive strength using relevance vector machines", J. Eng. Technol., 3(2), 224-229.
- Bingol, A.F., Tortum, A. and Gul, R. (2013), "Neural networks analysis of compressive strength of lightweight concrete after high temperatures", Mater. Des., 52(1), 258-264. https://doi.org/10.1016/j.matdes.2013.05.022
- Cheng, M.Y., Chou, J.S., Roy, A.F.V. and Wu, Y.W. (2012), "High-performance concrete compressive strength prediction using time-weighted evolutionary fuzzy support vector machines inference model", Automat. Constr., 28(1), 106-115. https://doi.org/10.1016/j.autcon.2012.07.004
- Chou, J. and Pham, A. (2013), "Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength", Constr. Build. Mater., 49(1), 554-563. https://doi.org/10.1016/j.conbuildmat.2013.08.078
- Chou, J., Chiu, C., Farfoura, M. and Al-Taharwa, I. (2011), "Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques", J. Comput. Civil Eng., 25(June), 242-253. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000088
- Davoodi, E. and Khanteymoori, A.R. (2010), "Horse racing prediction using artificial neural networks", Proceedings of the Recent Advances in Neural Networks, Fuzzy Systems & Evolutionary Computing, 155-160.
- De Larrard, F. and Sedran, T. (1994), "Optimization of ultra-high-performance concrete by the use of a packing model", Cement Concrete Res., 24(6), 997-1009. https://doi.org/10.1016/0008-8846(94)90022-1
- Devore, J. (2012), Probability and Statistics for Engineering and Sciences, 8th Edition, Cengage Learning, California, U.S.A.
- Engelbrecht, A.P. (2007), Computational Intelligence: An Introduction, John Wiley & Sons, West Sussex, U.K.
- Erdal, H.I. (2013), "Two-level and hybrid ensembles of decision trees for high performance concrete compressive strength prediction", Eng. Appl. Artif. Intell., 26(7), 1689-1697. https://doi.org/10.1016/j.engappai.2013.03.014
- Feng, M.Q. and Bahng, E.Y. (1999), "Damage assessment of jacketed RC columns using vibration tests", J. Struct. Eng., 125(3), 265-271. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(265)
- Feng, M.Q. and Kim, J.M. (1998), "Identification of a dynamic system using ambient vibration measurements", J. Appl. Mech., 65(2), 1010-1023. https://doi.org/10.1115/1.2791895
- Gazder, U. and Hussain, S.A. (2013), "Traffic forecasting for King Fahd Causeway using artificial neural networks", Proceedings of the 15th International Conference on Computer Modelling and Simulation (UKSim).
- Guang, N.H. and Zong, W.J. (2000), "Prediction of compressive strength of concrete by neural networks", Cement Concrete Res., 30(1), 1245-1250. https://doi.org/10.1016/S0008-8846(00)00345-8
- Hacene, S.M.A.B., Ghomari, F., Schoefs, F. and Khelidj, A. (2014), "Probabilistic modelling of compressive strength of concrete using response surface methodology and neural networks", Arab. J. Sci. Eng., 39(6), 4451-4460. https://doi.org/10.1007/s13369-014-1139-y
- Hong-Guang, N. and Ji-Zong, W. (2000), "Prediction of compressive strength of concrete by neural networks", Cement Concrete Res., 30(1), 1245-1250. https://doi.org/10.1016/S0008-8846(00)00345-8
- Jain, A.K., Mao, J. and Mohiuddin, K.M. (1996), "Artificial neural networks: A tutorial", IEEE Comput., 29(3), 31-44.
- Kasperkiewicz, J., Racz, J. and Dubrawski, A. (1995), "HPC strength prediction using artificial neural network", J. Comput. Civil Eng., 9(4), 279-284. https://doi.org/10.1061/(ASCE)0887-3801(1995)9:4(279)
- Khan, U.S., Ayub, T. and Rafeeqi, S.F.A. (2013), "Prediction of compressive strength of plain concrete confined with ferrocement using artificial neural network (ANN) and comparison with existing mathematical models", Am. J. Civil Eng. Archit., 1(1), 7-14. https://doi.org/10.12691/ajcea-1-1-2
- Khatibinia, M., Feizbakhsh, A., Mohseni, E. and Ranjbar, M.M. (2016), "Modeling mechanical strength of self-compacting mortar containing nanoparticles using wavelet-based support vector machine", Comput. Concrete, 18(6), 1065-1082. https://doi.org/10.12989/CAC.2016.18.6.1065
- Kim, J.M., Kim, D.K., Feng, M.Q. and Yazdani, F. (2004), "Application of neural networks for estimation of concrete strength", J. Mater. Civil Eng., 16(June), 257-264. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:3(257)
- Martins, F.F. and Camoes, A. (2013), "Prediction of compressive strength of concrete containing fly ash using data mining techniques", Cement Wapno Beton, (1).
- Oh, J.W., Lee, I.W., Kim, J.T. and Lee, G.W. (1999), "Application of neural networks for proportioning of concrete mixes", ACI Mater. J., 96(1), 61-67.
- Russell, H.G. (1999), "ACI defines high-performance concrete", Concrete Int., 21(2), 56-57.
- Sadrmomtazi, A., Sobhani, J. and Mirgozar, M.A. (2013), "Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS", Constr. Build. Mater., 42(1), 205-216. https://doi.org/10.1016/j.conbuildmat.2013.01.016
- Santamaria, A., Orbe, A., Losanez, M.M., Skaf, M., Ortega-Lopez, V. and Gonzalez, J.J. (2016), "Self-compacting concrete incorporating electric arc-furnace steelmaking slag as aggregate", Mater. Des., In Press.
- Vlahogianni, E.I., Karlaftis, M.G. and Golias, J.C. (2005), "Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach", Transp. Res. Part C: Emerg. Technol., 13(3), 211-234. https://doi.org/10.1016/j.trc.2005.04.007
- Wu, C., Pan, Z. and Meng, S. (2016), "Cyclic constitutive model for strain-hardening cementitious composites", Mag. Concrete Res., 68(22), 1-10. https://doi.org/10.1680/jmacr.14.00238
- Yeh, I.C. (1998), "Modelling of strength of high-performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3
- Zurada, J.M. (1992), Introduction to Artificial Neural Systems, St. Paul: West, Kentucky, U.S.A.
Cited by
- Estimating the compressive strength of HPFRC containing metallic fibers using statistical methods and ANNs vol.10, pp.6, 2017, https://doi.org/10.12989/acc.2020.10.6.479
- Estimating the compressive strength of HPFRC containing metallic fibers using statistical methods and ANNs vol.10, pp.6, 2017, https://doi.org/10.12989/acc.2020.10.6.479
- Artificial intelligence for the compressive strength prediction of novel ductile geopolymer composites vol.28, pp.1, 2017, https://doi.org/10.12989/cac.2021.28.1.055