DOI QR코드

DOI QR Code

Effect of silica fume and polyepoxide-based polymer on electrical resistivity, mechanical properties, and ultrasonic response of SCLC

  • Mazloom, Moosa (Department of Civil Engineering, Shahid Rajaee Teacher Training University) ;
  • Allahabadi, Ali (Department of Civil Engineering, Shahid Rajaee Teacher Training University) ;
  • Karamloo, Mohammad (Department of Civil Engineering, Shahid Rajaee Teacher Training University)
  • 투고 : 2017.08.13
  • 심사 : 2017.09.26
  • 발행 : 2017.12.25

초록

This study focused on the influences regarding the use of polyepoxide-based polymer and silica fume (SF) on the fresh and hardened state properties of self-compacting lightweight concrete (SCLC) along with their impacts on electrical resistance and ultrasonic pulse velocity (UPV). To do so, two series of compositions each of which consists of twelve mixes, with water to binder (W/B) ratios of 0.35 and 0.4 were cast. Three different silica fume/binder ratios of 0, 5%, and 10% were considered along with four different polymer/binder ratios of 0, 5%, 10%, and 15%. Afterwards, the rupture modulus, tensile strength, 14-day, 28-day, and 90-day compressive strength, the UPV and the electrical resistance of the mixes were tested. The results indicated that although the use of polymer could enhance the passing and filling abilities, it could lead to a decrease of segregation resistance. In addition, the interaction of the SF and the polymeric contents enhanced the workability. However, the impacts regarding the use of polymeric contents on fresh state properties of SCLC were more prevalent than those regarding the use of SF. Besides the fresh state properties, the durability and mechanical properties of the mixes were affected due to the use of polymeric and SF contents. In other words, the use of the SF and the polymer enhanced the durability and mechanical properties of SCLC specimens.

키워드

참고문헌

  1. Aliabdo, A.A.E. and Abd_Elmoaty, A.E.M. (2012), "Experimental investigation on the properties of polymer modified SCC", Constr. Build. Mater., 34, 584-592. https://doi.org/10.1016/j.conbuildmat.2012.02.067
  2. ASTM C 78 (2002) Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading), ASTM International, West Conshohocken, Pennsylvania, U.S.A.
  3. ASTM C 496 (2002) Standard Test Method for Splitting Tensile Strength of Cylinderical Concrete Specimens, American Society of Testing Materials.
  4. Bani Ardalan, R., Joshaghani, A. and Hooton, R.D. (2017), "Workability retention and compressive strength of self-compacting concrete incorporating pumice powder and silica fume", Constr. Build. Mater., 134, 116-122. https://doi.org/10.1016/j.conbuildmat.2016.12.090
  5. Bentz, D.P., Snyder, K.A. and Ahmed, A. (2015), "Anticipating the setting time of high-volume fly ash concretes using electrical measurements: Feasibilitystudies using pastes", J. Mater. Civil Eng., 27, 04014129. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001065
  6. BS EN 12390 (2000), Testing Hardened Concrete, Method of Determination of Compressive Strength of Concrete Cubes, British Standards Institution.
  7. Dave, N., Misra, A.K., Srivastava, A., Sharma, A.K. and Kaushik, S.K. (2017), "Study on quaternary concrete micro-structure, strength, durability considering the influence of multi-factors", Constr. Build. Mater., 139, 447-457. https://doi.org/10.1016/j.conbuildmat.2017.02.068
  8. EFNARC (2002) Specification & Guidlines for Self-Compacting Concrete, European Federation for Specialist Construction Chemicals and Concrete Systems, Norfolk, U.K.
  9. Frigione, M. (2013), Concrete with Polymers, 386-436.
  10. Ghoddousi, P. and Adelzade Saadabadi, L. (2017), "Pore structure indicators of chloride transport in metakaolin and silica fume self-compacting concrete", J. Civil  Eng., 1-10.
  11. Hanif, A., Lu, Z., Sun, M., Parthasarathy, P. and Li, Z. (2017), "Green lightweight ferrocement incorporating fly ash cenosphere based fibrous mortar matrix", J. Clean Prod.
  12. Holschemacher, K., Iqbal, S., Ali, A. and Bier, T.A. (2017), "Strengthening of RC beams using lightweight self-compacting cementitious", Compos. Proc. Eng.,172, 369-376. https://doi.org/10.1016/j.proeng.2017.02.042
  13. Hornbostel, K., Larsen, C.K. and Geiker, M.R. (2013), "Relationship between concrete resistivity and corrosion rate-a literature review", Cement Concrete Compos., 39, 60-72. https://doi.org/10.1016/j.cemconcomp.2013.03.019
  14. Hwang, C.L. and Tran, V.A. (2016), "Engineering and durability properties of self-consolidating concrete incorporating foamed lightweight aggregate", J. Mater. Civil  Eng., 28.
  15. Issa, C.A. and Assaad, J.J. (2016), "Stability and bond properties of polymer-modified self-consolidating concrete for repair applications", Mater. Struct., 50.
  16. Brooks, J.J., Megat Johari, M.A. and Mazloom, M. (2000), "Effect of admixtures on the setting times of high-strength concretes", Cement Concrete Compos., 22,293-301 https://doi.org/10.1016/S0958-9465(00)00025-1
  17. Kabir, S.M.A., Alengaram, U.J., Jumaat, M.Z., Sharmin, A. and Bashar, I.I. (2017), "Performance evaluation and some durability characteristics of environmental friendly palm oil clinker based geopolymer concrete", J. Clean Prod.
  18. Kaffetzakis, M. and Papanicolaou, C. (2016), "Lightweight aggregate self-compacting Concrete (LWASCC) semi-automated mix design methodology", Constr. Build. Mater., 123, 254-260. https://doi.org/10.1016/j.conbuildmat.2016.07.012
  19. Karahan, O. and Hossain, K.M.A., Ozbay, E., Lachemi, M. and Sancak, E. (2012), "Effect of metakaolin content on the properties self-consolidating lightweight concrete", Constr. Build. Mater., 31, 320-325. https://doi.org/10.1016/j.conbuildmat.2011.12.112
  20. Karamloo, M., Mazloom, M. and Payganeh, G. (2016a), "Effects of maximum aggregate size on fracture behaviors of self-compacting lightweight concrete", Constr. Build. Mater., 123, 508-515. https://doi.org/10.1016/j.conbuildmat.2016.07.061
  21. Karamloo, M., Mazloom, M. and Payganeh, G. (2016b), "Influences of water to cement ratio on brittleness and fracture parameters of self-compacting lightweight concrete", Eng. Fract. Mech., 168, 227-241. https://doi.org/10.1016/j.engfracmech.2016.09.011
  22. Karamloo, M., Mazloom, M. and Payganeh, G. (2017), "Effect of size on nominal strength of self-compacting lightweight concrete and self-compacting normal weight concrete: A stress-based approach", Mater. Tod. Commun.
  23. Khalid, N.H.A., Hussin, M.W., Ismail, M., Basar, N., Ismail, M.A., Lee, H.S. and Mohamed, A. (2015), "Evaluation of effectiveness of methyl methacrylate as retarder additive in polymer concrete", Constr. Build. Mater., 93, 449-456. https://doi.org/10.1016/j.conbuildmat.2015.06.022
  24. Kong, X., Emmerling, S., Pakusch, J., Rueckel, M. and Nieberle, J. (2015), "Retardation effect of styrene-acrylate copolymer latexes on cement hydration", Cement Concrete Res., 75, 23-41. https://doi.org/10.1016/j.cemconres.2015.04.014
  25. Layssi, H., Ghods, P., Alizadeh, A.R. and Salehi, M. (2015), "Electrical resistivity of concrete", Concrete Int., 41-46.
  26. Ma, H. and Li, Z. (2013), "Microstructures and mechanical properties of polymer modified mortars under distinct mechanisms", Constr. Build. Mater., 47, 579-587. https://doi.org/10.1016/j.conbuildmat.2013.05.048
  27. Mazloom, M. (2008), "Estimating long-term creep and shrinkage of high-strength concrete", Cement Concrete Compos., 30, 316-326. https://doi.org/10.1016/j.cemconcomp.2007.09.006
  28. Mazloom, M. (2013), "Application of neural networks for predicting the workability of self-compacting concrete", J. Sci. Res. Rep., 2, 429-442.
  29. Mazloom, M. and Hatami, H. (2016), "The behavior of self-compacting light weight concrete produced by magnetic water world academy of science, engineering and technology", J. Civil Environ. Struct. Constr. Archit. Eng., 9, 1662-1666.
  30. Mazloom, M. and Mahboubi, F. (2017), "Evaluating the settlement of lightweight coarse aggregate in self-compacting lightweight concrete", Comput. Concrete,19(2), 203-210. https://doi.org/10.12989/cac.2017.19.2.203
  31. Mazloom, M. and Miri, S.M. (2017), "Interaction of magnetic water, silica fume and superplasticizer on fresh and hardened properties of concrete", Adv. Concrete Constr., 5, 87-99. https://doi.org/10.12989/acc.2017.5.2.087
  32. Mazloom, M., Ramezanianpour, A.A. and Brooks, J.J. (2004), "Effect of silica fume on mechanical properties of high-strength concrete", Cement Concrete Compos., 26(4), 347-357.
  33. Mazloom, M., Saffari, A. and Mehrvand, M. (2015), "Compressive, shear and torsional strength of beams made of self-compacting concrete", Comput. Concrete,15(6), 935-950. https://doi.org/10.12989/cac.2015.15.6.935
  34. Mazloom, M. and Yoosefi, M.M. (2013), "Predicting the indirect tensile strength of self-compacting concrete using artificial neural networks", Comput. Concrete,12(3), 285-301. https://doi.org/10.12989/cac.2013.12.3.285
  35. Mehta, P.K. and Monteiro, P.J.M. (2006), Concrete: Microstructure, Properties and Materials, 3rd Edition, McGraw-Hill, New York, U.S.A.
  36. Mohammadhosseini, H., Yatim, J.M., Sam, A.R.M. and Awal, A.S.M.A. (2017), "Durability performance of green concrete composites containing waste carpet fibers and palm oil fuel ash", J. Clean Prod., 144, 448-458. https://doi.org/10.1016/j.jclepro.2016.12.151
  37. Moosa, M. and Yoosefi, M.M. (2011), "Estimating the long-term strength of self-compacting concrete from short-term tests", J. Civil Eng. Archit., 5, 68-76.
  38. Onuaguluchi, O. and Banthia, N. (2017), "Durability performance of polymeric scrap tire fibers and its reinforced cement mortar", Mater. Struct., 50(2), 158. https://doi.org/10.1617/s11527-017-1025-7
  39. Pacheco-Torgal, F. and Jalali, S. (2009), "Sulphuric acid resistance of plain, polymer modified, and fly ash cement concretes", Constr. Build. Mater. 23, 3485-3491. https://doi.org/10.1016/j.conbuildmat.2009.08.001
  40. Papanicolaou, C.G. and Kaffetzakis, M.I. (2011), "Lightweight aggregate self-compacting concrete: State-of-the-art & pumice application", J. Adv. Concrete Technol., 9, 15-29. https://doi.org/10.3151/jact.9.15
  41. Rajabipour, F., Weiss, J. and Abraham, D.M. (2004), "In-situ electrical conductivity measurements to assess moisture and ionic transport in concrete", Proceedings of the International RILEM Symposium on Concrete Science and Engineering: A Tribute to Arnon Bentur.
  42. Ranade, R., Zhang, J., Lynch, J.P. and Li, V.C. (2014), "Influence of micro-cracking on the composite resistivity of engineered cementitious composites", Cement Concrete Res., 58, 1-12. https://doi.org/10.1016/j.cemconres.2014.01.002
  43. Roudak, M.A., Shayanfar, M.A., Barkhordari, M.A. and Karamloo, M. (2017a), "A new three-phase algorithm for computation of reliability index and its application in structural mechanics MeReC", 85, 53-60.
  44. Roudak, M.A., Shayanfar, M.A., Barkhordari, M.A. and Karamloo, M. (2017b), "A robust approximation method for nonlinear cases of structural reliability analysis", IJMS.
  45. Vakhshouri, B. and Nejadi, S. (2017), "Compressive strength and mixture proportions of self-compacting lightweight concrete", Comput. Concrete, 19.
  46. Wang, J., Zhang, S., Yu, H., Kong, X., Wang, X. and Gu, Z. (2005), "Study of cement mortars modified by emulsifier-free latexes", Cement Concrete Compos., 27, 920-925.
  47. Wang, R., Wang, P.M. and Yao, L.J. (2012), "Effect of redispersible vinyl acetate and versatate copolymer powder on flexibility of cement mortar", Constr., Build., Mater., 27, 259-262. https://doi.org/10.1016/j.conbuildmat.2011.07.050
  48. Zarghami, E., Fatourehchi, D. and Karamloo, M. (2017), "Impact of daylighting design strategies on social sustainability through the built environment sustainable development".
  49. Zeyad, A.M., Megat Johari, M.A., Tayeh, B.A. and Yusuf, M.O. (2017), "Pozzolanic reactivity of ultrafine palm oil fuel ash waste on strength and durability performances of high strength concrete", J. Clean Pro. 144, 511-522. https://doi.org/10.1016/j.jclepro.2016.12.121

피인용 문헌

  1. Assessment of the influence of micro- and nano-silica on the behavior of self-compacting lightweight concrete using full factorial design vol.20, pp.1, 2019, https://doi.org/10.1007/s42107-018-0088-2
  2. Fracture behavior of self-compacting semi-lightweight concrete containing nano-silica vol.22, pp.10, 2017, https://doi.org/10.1177/1369433219837426
  3. Fracture behavior of monotype and hybrid fiber reinforced self-compacting concrete at different temperatures vol.9, pp.4, 2017, https://doi.org/10.12989/acc.2020.9.4.375
  4. Electrical Resistivity of Steel Fibre-Reinforced Concrete-Influencing Parameters vol.14, pp.12, 2017, https://doi.org/10.3390/ma14123408
  5. Fracture of fibre-reinforced cementitious composites after exposure to elevated temperatures vol.73, pp.14, 2017, https://doi.org/10.1680/jmacr.19.00401
  6. Modification of Lightweight Aggregate Concretes with Silica Nanoparticles-A Review vol.14, pp.15, 2017, https://doi.org/10.3390/ma14154242