참고문헌
- Ceryan, N. (2014), "Application of support vector machines and relevance vector machines in predicting uniaxial compressive strength of volcanic rocks", J. African Earth Sci., 100, 634-644. https://doi.org/10.1016/j.jafrearsci.2014.08.006
- Chandwani, V., Agarwal, V. and Nagar, R, (2012), "Modeling slump of ready mix concrete using genetic algorithms assisted training of Artificial Neural Networks", Earth Syst. Appl., 42, 885-893.
- Chen, W., Chen, K., Kuang, C., David, Z., Zhu, D.Z., He, L., Mao, X., Liang, H. and Song, H. (2016), "Influence of sea level rise on saline water intrusion in the Yangtze River Estuary, China", Appl. Ocean Res., 54, 12-25.
- Coulibaly, P., Anctil, F., Aravena, R. and Bobee, B. (2001), "Artificial neural network modeling of water table depth fluctuations", Water Resour. Res., 37, 885-896. https://doi.org/10.1029/2000WR900368
- Deo, R.C. and Samui, P. (2017), "Forecasting evaporative loss by least-square support-vector regression and evaluation with genetic programming, Gaussian process, and minimax probabilitymachine regression: Case study of brisbane", J. Hydrol. Eng., 22(6), 1-15.
- Goharnejad, H., Shamsai, A. and Hosseini, S.A. (2013), "Vulnerability assessment of southern coastal areas of Iran to sea level rise: evaluation of climate change impact", Oceanologia, 55(3), 611-637. https://doi.org/10.5697/oc.55-3.611
- Han, D., Kwong, T. and Li, S. (2007), "Uncertainties in real-time flood forecasting with neural networks", Hydrol. Process., 21(2), 223-228. https://doi.org/10.1002/hyp.6184
- Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
- IPCC. (2007), "Climate change 2007: The scientific basis", (Eds., Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom/New York City, United States.
- Kumar, M., Mittal, M. and Samui, P. (2013), "Performance assessment of genetic programming and minimax probability machine regression for prediction of seismic ultrasonic attenuation", Earthq. Sci., 26(2), 147-150. https://doi.org/10.1007/s11589-013-0018-z
- Masciopinto, C. and Liso, I.S. (2016), "Assessment of the impact of sea-level rise due to climate change on coastal groundwater discharge", Sci. Total Environ., 672-680.
- Nourani, V. and Mousavi, S. (2016), "Spatiotemporal groundwater level modeling using hybrid artificial intelligence-meshless method", J . Hydrol., 536, 10-25. https://doi.org/10.1016/j.jhydrol.2016.02.030
- Nourani, V., Komasi, M. and Mano, A. (2009)," A multivariate ANN-wavelet approach for rainfall-runoff modeling", Water Resour. Manag., 23, 2877-2894. https://doi.org/10.1007/s11269-009-9414-5
- Sahoo, S. and Jha, M.K. (2013), "Groundwater-level prediction using multiple linear regression and artificial neural network techniques: a comparative assessment", Hydrogeol. J., 21, 1865-1887. https://doi.org/10.1007/s10040-013-1029-5
- Seo, Y., Kim, S., Kisi, O. and Singh, V.P. (2015), "Daily water level forecasting using wavelet decomposition and artificial intelligence techniques", J. Hydrol., 520, 224-243. https://doi.org/10.1016/j.jhydrol.2014.11.050
- Strohmann, T. and Grudic, G.Z. (2002), "A formulation for minimax probability machine regression", Proc., Advances in Neural Information Processing System, MIT Press, Cambridge, MA, 769-776.
- Yang, L., Wang, L., Sun, Y. and Zhang, R. (2010), "Simultaneous feature selection and classification via Minimax Probability Machine". Int. J. Comput. Intell. Syst., 3(6), 754-760.