DOI QR코드

DOI QR Code

Potential of regression models in projecting sea level variability due to climate change at Haldia Port, India

  • Roshni, Thendiyath (Department of Civil Engineering, National Institute of Technology Patna) ;
  • K., Md. Sajid (Department of Civil Engineering, National Institute of Technology Patna) ;
  • Samui, Pijush (Department of Civil Engineering, National Institute of Technology Patna)
  • 투고 : 2017.08.18
  • 심사 : 2017.11.09
  • 발행 : 2017.12.25

초록

Higher prediction efficacy is a very challenging task in any field of engineering. Due to global warming, there is a considerable increase in the global sea level. Through this work, an attempt has been made to find the sea level variability due to climate change impact at Haldia Port, India. Different statistical downscaling techniques are available and through this paper authors are intending to compare and illustrate the performances of three regression models. The models: Wavelet Neural Network (WNN), Minimax Probability Machine Regression (MPMR), Feed-Forward Neural Network (FFNN) are used for projecting the sea level variability due to climate change at Haldia Port, India. Model performance indices like PI, RMSE, NSE, MAPE, RSR etc were evaluated to get a clear picture on the model accuracy. All the indices are pointing towards the outperformance of WNN in projecting the sea level variability. The findings suggest a strong recommendation for ensembled models especially wavelet decomposed neural network to improve projecting efficiency in any time series modeling.

키워드

참고문헌

  1. Ceryan, N. (2014), "Application of support vector machines and relevance vector machines in predicting uniaxial compressive strength of volcanic rocks", J. African Earth Sci., 100, 634-644. https://doi.org/10.1016/j.jafrearsci.2014.08.006
  2. Chandwani, V., Agarwal, V. and Nagar, R, (2012), "Modeling slump of ready mix concrete using genetic algorithms assisted training of Artificial Neural Networks", Earth Syst. Appl., 42, 885-893.
  3. Chen, W., Chen, K., Kuang, C., David, Z., Zhu, D.Z., He, L., Mao, X., Liang, H. and Song, H. (2016), "Influence of sea level rise on saline water intrusion in the Yangtze River Estuary, China", Appl. Ocean Res., 54, 12-25.
  4. Coulibaly, P., Anctil, F., Aravena, R. and Bobee, B. (2001), "Artificial neural network modeling of water table depth fluctuations", Water Resour. Res., 37, 885-896. https://doi.org/10.1029/2000WR900368
  5. Deo, R.C. and Samui, P. (2017), "Forecasting evaporative loss by least-square support-vector regression and evaluation with genetic programming, Gaussian process, and minimax probabilitymachine regression: Case study of brisbane", J. Hydrol. Eng., 22(6), 1-15.
  6. Goharnejad, H., Shamsai, A. and Hosseini, S.A. (2013), "Vulnerability assessment of southern coastal areas of Iran to sea level rise: evaluation of climate change impact", Oceanologia, 55(3), 611-637. https://doi.org/10.5697/oc.55-3.611
  7. Han, D., Kwong, T. and Li, S. (2007), "Uncertainties in real-time flood forecasting with neural networks", Hydrol. Process., 21(2), 223-228. https://doi.org/10.1002/hyp.6184
  8. Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
  9. IPCC. (2007), "Climate change 2007: The scientific basis", (Eds., Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom/New York City, United States.
  10. Kumar, M., Mittal, M. and Samui, P. (2013), "Performance assessment of genetic programming and minimax probability machine regression for prediction of seismic ultrasonic attenuation", Earthq. Sci., 26(2), 147-150. https://doi.org/10.1007/s11589-013-0018-z
  11. Masciopinto, C. and Liso, I.S. (2016), "Assessment of the impact of sea-level rise due to climate change on coastal groundwater discharge", Sci. Total Environ., 672-680.
  12. Nourani, V. and Mousavi, S. (2016), "Spatiotemporal groundwater level modeling using hybrid artificial intelligence-meshless method", J . Hydrol., 536, 10-25. https://doi.org/10.1016/j.jhydrol.2016.02.030
  13. Nourani, V., Komasi, M. and Mano, A. (2009)," A multivariate ANN-wavelet approach for rainfall-runoff modeling", Water Resour. Manag., 23, 2877-2894. https://doi.org/10.1007/s11269-009-9414-5
  14. Sahoo, S. and Jha, M.K. (2013), "Groundwater-level prediction using multiple linear regression and artificial neural network techniques: a comparative assessment", Hydrogeol. J., 21, 1865-1887. https://doi.org/10.1007/s10040-013-1029-5
  15. Seo, Y., Kim, S., Kisi, O. and Singh, V.P. (2015), "Daily water level forecasting using wavelet decomposition and artificial intelligence techniques", J. Hydrol., 520, 224-243. https://doi.org/10.1016/j.jhydrol.2014.11.050
  16. Strohmann, T. and Grudic, G.Z. (2002), "A formulation for minimax probability machine regression", Proc., Advances in Neural Information Processing System, MIT Press, Cambridge, MA, 769-776.
  17. Yang, L., Wang, L., Sun, Y. and Zhang, R. (2010), "Simultaneous feature selection and classification via Minimax Probability Machine". Int. J. Comput. Intell. Syst., 3(6), 754-760.