References
- Aktas, A. (2001), "Determination of the deflection function of a composite cantilever beam using theory of anisotropic elasticity", Math. Comput. Appl., 6(1), 67-74.
- Annigeri, A.R., Ganesan, N. and Swarnamani, S. (2007), "Free vibration behaviour of multiphase and layered magneto-electro-elastic beam", J. Sound Vibr., 299(1-2), 44-63. https://doi.org/10.1016/j.jsv.2006.06.044
- Arefi, M. and Zenkour, A.M. (2017), "Electro-magneto-elastic analysis of a three layer curved beam", Smart Struct. Syst., 19(6), 695-703. https://doi.org/10.12989/SSS.2017.19.6.695
- Balu, S., Kannan, G.R. and Rajalingam, K. (2014), "Static studies on piezoelectric/piezomagnetic composite structure under mechanical and thermal loading", IJERST, 3(2), 678-685.
- Benedetti, I. and Milazzo, A. (2017), "Advanced models for smart multilayered plates based on reissner mixed variational theorem", Compos. Part B: Eng., 119, 215-229. https://doi.org/10.1016/j.compositesb.2017.03.007
- Bhangale, R.K. and Ganesan, N. (2006), "Free vibration of simply supported functionally graded and layered magneto-electro-elastic plates by finite element method", J. Sound Vibr., 294(4), 1016-1038. https://doi.org/10.1016/j.jsv.2005.12.030
- Biju, B.N., Ganesan, N. and Shankar, K. (2011), "Dynamic response of multiphase magnetoelectroelastic sensors using 3D magnetic vector potential approach", IEEE Sens. J., 11(9), 2169-2176. https://doi.org/10.1109/JSEN.2011.2112346
- Carrera, E., Brischetto, S., Fagiano, C. and Nali, P. (2009), "Mixed multilayered plate elements for coupled magneto-electro-elastic analysis", Multidiscipl. Model. Mater. Struct., 5, 251-256. https://doi.org/10.1163/157361109789017050
- Chen, J., Chen, H., Pan, E. and Heyliger, P.R. (2007), "Modal analysis of magneto-electro-elastic plates using the state-vector approach", J. Sound Vibr., 304, 722-734. https://doi.org/10.1016/j.jsv.2007.03.021
- Ebrahimi, F. and Barati, M.R. (2016a), "A nonlocal higher-order magneto electro visco-elastic beam model for dynamic analysis of smart nanostructures", J. Eng. Sci., 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001
- Ebrahimi, F. and Barati, M.R. (2016b), "Dynamic modeling of a thermos-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 451. https://doi.org/10.1007/s00339-016-0001-3
- Ebrahimi, F. and Barati, M.R. (2016c), "Magnetic field effects on dynamic behavior of inhomogeneous thermo-piezo-electrically actuated nanoplates", J. Brazil. Soc. Mech. Sci. Eng., 39(6), 2203-2223.
- Ebrahimi, F., Jafari, A. and Barati, M.R. (2017), "Vibration analysis of magneto-electro-elastic heterogeneous porous material plates resting on elastic foundations", Thin-Wall. Struct., 119, 33-46. https://doi.org/10.1016/j.tws.2017.04.002
-
Fan, X. and Wu, Z. (2016), "
$C_0$ -type Reddy's theory for composite beams using FEM under thermal loads", Struct. Eng. Mech., 57(3), 457-471. https://doi.org/10.12989/sem.2016.57.3.457 - Huang, D.J., Ding, H.J. and Chen, W.Q. (2007), "Analytical solution for functionally graded magneto-electro-elastic plane beams", J. Eng. Sci., 45, 467-485. https://doi.org/10.1016/j.ijengsci.2007.03.005
- Jandaghian, A.A. and Rahmani, O. (2016), "Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation", Smart Mater. Struct., 25(3), 035023. https://doi.org/10.1088/0964-1726/25/3/035023
- Kattimani, S.C. (2017), "Geometrically nonlinear vibration analysis of multiferroic composite plates and shells", Compos. Struct., 163, 185-194. https://doi.org/10.1016/j.compstruct.2016.12.021
- Kattimani, S.C. and Ray, M.C (2014a), "Smart damping of geometrically nonlinear vibrations of magneto-electro-elastic plates", Compos. Struct., 114(1), 51-63. https://doi.org/10.1016/j.compstruct.2014.03.050
- Kattimani, S.C. and Ray, M.C. (2014b), "Active control of large amplitude vibrations of smart magneto-electro-elastic doubly curved shells", J. Mech. Mater. Des., 10(4), 351-378. https://doi.org/10.1007/s10999-014-9252-3
- Kattimani, S.C. and Ray, M.C. (2015), "Control of geometrically nonlinear vibrations of functionally graded magneto-electro-elastic plates", J. Mech. Sci., 99, 154-167. https://doi.org/10.1016/j.ijmecsci.2015.05.012
- Kondaiah, P., Shankar, K. and Ganesan, N. (2015), "Pyroeffects on magneto-electro-elastic sensor bonded on mild steel cylindrical shell", Smart Struct. Syst., 16(3), 537-554. https://doi.org/10.12989/sss.2015.16.3.537
- Kondaiah, P., Shankar, K. and Ganesan, N. (2017), "Pyroeffects on magneto-electro-elastic sensor patch subjected to thermal load", Smart Struct. Syst., 19(3), 299-307. https://doi.org/10.12989/sss.2017.19.3.299
- Kondaiah. P., Shankar, K. and Ganesan, N. (2012), "Studies on magneto-electro-elastic cantilever beam under thermal environment", Coupled Syst. Mech., 1(2), 205-217. https://doi.org/10.12989/csm.2012.1.2.205
- Lage, R.G. and Soares, C.M.M. (2004), "Layerwise partial mixed finite element analysis of magneto-electro-elastic plates", Comput. Struct., 82, 1293-1301. https://doi.org/10.1016/j.compstruc.2004.03.026
- Milazzo, A. (2013), "A one-dimensional model for dynamic analysis of generally layered magneto-electro-elastic beams", J. Sound Vibr., 332(2), 465-483. https://doi.org/10.1016/j.jsv.2012.09.004
- Milazzo, A., Orlando, C. and Alaimo, A. (2009), "An analytical solution for the magneto-electro-elastic bimorph beam forced vibrations problem", Smart Mater. Struct., 18(8), 85012. https://doi.org/10.1088/0964-1726/18/8/085012
- Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates", J. Eng. Sci., 43(3-4), 321-339. https://doi.org/10.1016/j.ijengsci.2004.09.006
- Simoes Moita, J.M., Mota Soares, C.M. and Mota Soares, C.A. (2009), "Analyses of magneto-electro-elastic plates using a higher order finite element model", Compos. Struct., 91(4), 421-426. https://doi.org/10.1016/j.compstruct.2009.04.007
- Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002
- Sladek, J., Sladek, V., Krahulec, S. and Pan, E. (2013), "The MLPG analyses of large deflections of magnetoelectroelastic plates", Eng. Analy. Bound. Elem., 37(4), 673-682. https://doi.org/10.1016/j.enganabound.2013.02.001
- Sladek, J., Sladek, V., Repka, M., Kasala, J. and Bishay, P. (2017), "Evaluation of effective material properties in magneto-electro-elastic composite materials", Compos. Struct., 174, 176-186. https://doi.org/10.1016/j.compstruct.2017.03.104
- Vaezi, M., Shirbani, M.M. and Hajnayeb, A. (2016), "Free vibration analysis of magneto-electro-elastic microbeams subjected to magneto-electric loads", Phys. E: Low-Dimens. Syst. Nanostruct., 75, 280-286. https://doi.org/10.1016/j.physe.2015.09.019
- Vinyas, M. and Kattimani, S.C. (2017c), "Static behavior of thermally loaded multilayered magneto-electro-elastic beam", Struct. Eng. Mech., 63(4), 481-495. https://doi.org/10.12989/SEM.2017.63.4.481
- Vinyas, M. and Kattimani, S.C. (2017e), "Multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment", Coupled Syst. Mech., 3(4), 351-367.
- Vinyas, M. and Kattimani, S.C. (2017f), "Hygrothermal analysis of magneto-electro-elastic plate using 3D finite element analysis", Compos. Struct., 180, 617-637. https://doi.org/10.1016/j.compstruct.2017.08.015
- Vinyas, M. and Kattimani, S.C. (2017a), "Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads", Compos. Struct., 163, 216-237. https://doi.org/10.1016/j.compstruct.2016.12.040
- Vinyas, M. and Kattimani, S.C. (2017b), "Static analysis of stepped functionally graded magneto-electro-elastic plates in thermal environment: A finite element study", Compos. Struct., 178, 63-86. https://doi.org/10.1016/j.compstruct.2017.06.068
- Vinyas, M. and Kattimani, S.C. (2017d), "A Finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading", Struct. Eng. Mech., 62(5), 519-535. https://doi.org/10.12989/sem.2017.62.5.519
Cited by
- Thermal response analysis of multi-layered magneto-electro-thermo-elastic plates using higher order shear deformation theory vol.73, pp.6, 2017, https://doi.org/10.12989/sem.2020.73.6.667