DOI QR코드

DOI QR Code

A comparative study for design of boundary combined footings of trapezoidal and rectangular forms using new models

  • 투고 : 2017.04.27
  • 심사 : 2017.08.24
  • 발행 : 2017.12.25

초록

This paper shows a comparative study for design of reinforced concrete boundary combined footings of trapezoidal and rectangular forms supporting two columns and each column transmits an axial load and a moment around of the axis X (transverse axis of the footing) and other moment around of the axis Y (longitudinal axis of the footing) to foundation to obtain the most economical combined footing. The real soil pressure acting on the contact surface of the footings is assumed as a linear variation. Methodology used to obtain the dimensions of the footings for the two models consider that the axis X of the footing is located in the same position of the resultant, i.e., the dimensions is obtained from the position of the resultant. The main part of this research is to present the differences between the two models. Results show that the trapezoidal combined footing is more economical compared to the rectangular combined footing. Therefore, the new model for the design of trapezoidal combined footings should be used, and complies with real conditions.

키워드

참고문헌

  1. ACI 318S-14 (2014), Building Code Requirements for Structural Concrete and Commentary, Committee 318, New York, U.S.A.
  2. Agrawal, R. and Hora, M.S. (2012), "Nonlinear interaction behaviour of infilled frame-isolated footings-soil system subjected to seismic loading", Struct. Eng. Mech., 44(1), 85-107. https://doi.org/10.12989/sem.2012.44.1.085
  3. Bowles, J.E. (2001), Foundation Analysis and Design, McGraw-Hill, New York, U.S.A.
  4. Calabera-Ruiz, J. (2000). Calculo de Estructuras de Cimentacion, Intemac Ediciones, Mexico.
  5. Chen, W.R., Chen, C.S. and Yu, S.Y. (2011), "Nonlinear vibration of hybrid composite plates on elastic foundations", Struct. Eng. Mech., 37(4), 367-383. https://doi.org/10.12989/sem.2011.37.4.367
  6. Cure, E., Sadoglu, E., Turker, E. and Uzuner, B.A. (2014), "Decrease trends of ultimate loads of eccentrically loaded model strip footings close to a slope", Geomech. Eng., 6(5), 469-485. https://doi.org/10.12989/gae.2014.6.5.469
  7. Das, B.M., Sordo-Zabay, E. and Arrioja-Juarez, R. (2006), Principios de Ingenieria de Cimentaciones, Cengage Learning Latin America, Mexico.
  8. Dixit, M.S. and Patil K.A. (2013), "Experimental estimate of $N{\gamma}$ values and corresponding settlements for square footings on finite layer of sand", Geomech. Eng., 5(4), 363-377. https://doi.org/10.12989/gae.2013.5.4.363
  9. ErzÍn, Y. and Gul, T.O. (2013), "The use of neural networks for the prediction of the settlement of pad footings on cohesionless soils based on standard penetration test", Geomech. Eng., 5(6), 541-564. https://doi.org/10.12989/gae.2013.5.6.541
  10. Gonzalez-Cuevas, O.M. and Robles-Fernandez-Villegas, F. (2005), Aspectos Fundamentales del Concreto Reforzado, Limusa, Mexico.
  11. Guler, K. and Celep, Z. (2005), "Response of a rectangular plate-column system on a tensionless Winkler foundation subjected to static and dynamic loads", Struct. Eng. Mech., 21(6), 699-712. https://doi.org/10.12989/sem.2005.21.6.699
  12. Kurian, N.P. (2005), Design of Foundation Systems, Alpha Science Int'l Ltd, New York, U.S.A.
  13. Lopez-Chavarria, S., Luevanos-Rojas, A. and Medina-Elizondo, M. (2017), "Optimal dimensioning for the corner combined footings", Adv. Comput. Des., 2(2), 169-183. https://doi.org/10.12989/ACD.2017.2.2.169
  14. Luevanos-Rojas, A. (2012a), "A mathematical model for dimensioning of footings square", I.RE.C.E., 3(4), 346-350.
  15. Luevanos-Rojas, A. (2012b), "A mathematical model for the dimensioning of circular footings", Far East J. Math. Sci., 71(2), 357-367.
  16. Luevanos-Rojas, A. (2013), "A mathematical model for dimensioning of footings rectangular", ICIC Expr. Lett. Part B: Appl., 4(2), 269-274.
  17. Luevanos-Rojas, A., Faudoa-Herrera, J.G., Andrade-Vallejo, R.A. and Cano-Alvarez M.A. (2013), "Design of isolated footings of rectangular form using a new model", J. Innov. Comput. I., 9(10), 4001-4022.
  18. Luevanos-Rojas, A. (2014a), "Design of isolated footings of circular form using a new model", Struct. Eng. Mech., 52(4), 767-786. https://doi.org/10.12989/sem.2014.52.4.767
  19. Luevanos-Rojas, A. (2014b), "Design of boundary combined footings of rectangular shape using a new model", Dyna-Colomb., 81(188), 199-208.
  20. Luevanos-Rojas, A. (2015a), "A new mathematical model for dimensioning of the boundary trapezoidal combined footings", J. Innov. Comput. I., 11(4), 1269-1279.
  21. Luevanos-Rojas, A. (2015b), "Design of boundary combined footings of trapezoidal form using a new model", Struct. Eng. Mech., 56(5), 745-765. https://doi.org/10.12989/sem.2015.56.5.745
  22. Luevanos-Rojas, A. (2016a), "A mathematical model for the dimensioning of combined footings of rectangular shape", Rev. Tec. Fac. Ing. Univ., 39(1), 3-9.
  23. Luevanos-Rojas, A. (2016b), "A comparative study for the design of rectangular and circular isolated footings using new models", Dyna-Colomb., 83(196), 149-158.
  24. Luevanos-Rojas, A. (2016c), "Un nuevo modelo para diseno de zapatas combinadas rectangulares de lindero con dos lados opuestos restringidos", ALCONPAT, 6(2), 172-187.
  25. Maheshwari, P. and Khatri, S. (2012), "Influence of inclusion of geosynthetic layer on response of combined footings on stone column reinforced earth beds", Geomech. Eng., 4(4), 263-279. https://doi.org/10.12989/gae.2012.4.4.263
  26. McCormac, J.C. and Brown, R.H. (2013), Design of Reinforced Concrete, John Wiley & Sons, Inc., Mexico.
  27. Mohamed, F.M.O., Vanapalli, S.K. and Saatcioglu, M. (2013), "Generalized Schmertmann Equation for settlement estimation of shallow footings in saturated and unsaturated sands", Geomech. Eng., 5(4), 363-377. https://doi.org/10.12989/gae.2013.5.4.363
  28. Orbanich, C.J., Dominguez, P.N. and Ortega, N.F. (2012), "Strenghtening and repair of concrete foundation beams whit fiber composite materials", Mater. Struct., 45, 1693-1704. https://doi.org/10.1617/s11527-012-9866-6
  29. Orbanich, C.J. and Ortega, N.F. (2013), "Analysis of elastic foundation plates with internal and perimetric stiffening beams on elastic foundations by using finite differences method", Struct. Eng. Mech., 45(2), 169-182. https://doi.org/10.12989/sem.2013.45.2.169
  30. Punmia, B.C., Kr.-Jain, A. and Kr.-Jain, A. (2007), Limit State Design of Reinforced Concrete, Laxmi Publications (P) Limited, New York, U.S.A.
  31. Rad, A.B. (2012), "Static response of 2-D functionally graded circular plate with gradient thickness and elastic foundations to compound loads", Struct. Eng. Mech., 44(2), 139-161. https://doi.org/10.12989/sem.2012.44.2.139
  32. Shahin, M.A. and Cheung, E.M. (2011), "Stochastic design charts for bearing capacity of strip footings", Geomech. Eng., 3(2), 153-167. https://doi.org/10.12989/gae.2011.3.2.153
  33. Smith-Pardo, J.P. (2011), "Performance-based framework for soil-structure systems using simplified rocking foundation models", Struct. Eng. Mech., 40(6), 763-782. https://doi.org/10.12989/sem.2011.40.6.763
  34. Tomlinson, M.J. (2008), Cimentaciones, Diseno y Construccion, Trillas, Mexico.
  35. Uncuoglu, E. (2015), "The bearing capacity of square footings on a sand layer overlying clay", Geomech. Eng., 9(3), 287-311. https://doi.org/10.12989/gae.2015.9.3.287
  36. Varghese, P.C. (2009), Design of Reinforced Concrete Foundations, PHI Learning Pvt. Ltd., New York, U.S.A.
  37. Zhang, L., Zhao, M.H., Xiao, Y. and Ma, B.H. (2011), "Nonlinear analysis of finite beam resting on Winkler with consideration of beam-soil interface resistance effect", Struct. Eng. Mech., 38(5), 573-592. https://doi.org/10.12989/sem.2011.38.5.573