DOI QR코드

DOI QR Code

Inclined cable-systems in suspended bridges for restricting dynamic deformations

  • 투고 : 2017.05.11
  • 심사 : 2017.07.12
  • 발행 : 2017.12.25

초록

The present paper deals with the influence of the inclination of cables' system on the decrease of the lateral-torsional motion because of dynamic loadings. For this goal, a mathematical model is proposed. A 3-D analysis is performed for the solution of the bridge model. The theoretical formulation is based on a continuum approach, which has been widely used in the literature to analyze such bridges. The resulting uncoupled equations of motion are solved using the Laplace Transformation, while the case of the coupled motion is solved through the use of the potential energy. Finally, characteristic examples are presented and useful results are obtained.

키워드

참고문헌

  1. Am. Association of State (1977), Standard Specifications for Highway Bridges, 12th Edition, Hwy and Transp. Officials (AASHTO), Washington, U.S.A.
  2. Baloevic, G., Radnic, J., Ggric, N., Matesan, D. and Smilovic, M. (2016), "Numerical model for nonlinear analysis of composite concrete-steel-masonry bridges", Coupled Syst. Mech., 5(1), 1-20 https://doi.org/10.12989/csm.2016.5.1.001
  3. Cantieri, R. (1991), Beitrag zur Dynamik von Strassenbrucken Unter der Uberfahrt Schwerer Fahrzeuge, Diss. ETH Nr 9505, Technische hochschule, Zurich.
  4. Council of Eur. Communities (1992), Council Directive, 92/7/EEC Amending Directive 85/3/EEC on the Weights, Dimensions and Certain Technical Characteristics of Certain Road Vehicles, Brussels, Belgium.
  5. Eckhard, B. and Ott, E. (2006), "Crowd synchrony on the London millennium bridge", Chaos, 16(4), 041104. https://doi.org/10.1063/1.2390554
  6. Foda, M.A. and Abduljabbar, Z. (1972), "A dynamic green function formulation for the response of a beam structure to a moving mass", J. Sound Vibr., 210(3).
  7. Fryba, L. (1972), Vibrations of Solids and Structures under Moving Loads, Groningen, Nordhoff International Publication Co.
  8. Gillespi, T.D. (1993), Effect of Heavy Vehicle Characteristics on Pavement Response and Performance, NCHRP, Rep. 353, Trans Res. Board (TRB), Washington, U.S.A.
  9. Greco, F., Lonetti, P. and Pascuzzo, A. (2013), "Dynamic analysis of cable-stayed bridges affected by accidental failure mechanisms under moving loads", Math. Prob. Eng.
  10. Green, M.F. and Cebon, D. (1994), "Dynamic response of highway bridges to heavy vehicle loads: Theory and experimental validations", J. Sound Vibr., 170(1).
  11. Green, M.F., Cebon, D. and Cole, D.J. (1995), "Effects of vehicle suspension design on dynamics of highway bridges", J. Struct. Eng., 121(2).
  12. Hillerborg, A. (1951), Dynamic Influences of Smoothly Running Loads of Simply Supported Girders, Kungl. Tekhn. Hogs kolan, Stockholm.
  13. Honda, H., Kajikawa, Y. and Kobori, T. (1982), "Spectra of road surface roughness on bridges", J. Struct. Eng., 108(9).
  14. Inglis, C.E. (1934), A Mathematical Treatise on Vibration in Railway Bridges, Cambridge University Press, Cambridge.
  15. Ingolfsson, E.T. and Georgakis, C.T. (2001), "A stochastic load model for pedestrian-induced lateral forces on footbridges", Eng. Struct., 33(12), 3454-3470. https://doi.org/10.1016/j.engstruct.2011.07.009
  16. Ingolfsson, E.T., Georgakis, C.T. and Jonsson, J. (2012), "Pedestrian-induced lateral vibrations of footbridges: A literature review", Eng. Struct., 45, 21-52. https://doi.org/10.1016/j.engstruct.2012.05.038
  17. ISO/TC 108/WG9 Draft No 3c, Int. Organization for Standarization (ISO), Geneva, Switzerland (1972), Proposals for Generalized Road Inputs to Vehicles.
  18. Jeffcott, H.H. (1929), "On the vibration of beams under the action of moving loads", Philosoph. Mag., Ser., 7-8(48), 66-67.
  19. Krylov, A.N. (1905), Mathematical Collection of Papers of the Academy of Sciences, St. Petersburg, 61.
  20. Krylov, A.N. (1905), "Uber die erzwungenen schwingungen von gleichformigen elastigchen staben", Math. Annal., 61, 211. https://doi.org/10.1007/BF01457563
  21. Lee, H.P. (1996), "Dynamic response of a beam with a moving mass", J. Sound Vibr., 191(2).
  22. Li, Z., Li, P., He, Z. and Cao, P. (2013), "Static and free vibration analysis of shallow sagging inclined cables", Struct. Eng. Mech., 45(2), 145-157. https://doi.org/10.12989/sem.2013.45.2.145
  23. Lonetti, P. and Pascuzzo, A. (2014), "Design analysis of the optimum configuration of self-anchored cable-stayed suspension bridges", Struct. Eng. Mech., 51(5), 847-866. https://doi.org/10.12989/sem.2014.51.5.847
  24. Lonetti, P. and Pascuzzo, A. (2014), "Vulnerability and failure analysis of hybrid cable-stayed suspension bridges subjected to damage mechanisms", Eng. Fail. Analy., 45, 470-495. https://doi.org/10.1016/j.engfailanal.2014.07.002
  25. Michaltsos, G.T. (2001), "The influence of centripetal and coriolis forces on the dynamic response of light bridges under moving vehicles", J. Sound Vibr., 247(2), 261-277. https://doi.org/10.1006/jsvi.2001.3729
  26. Michaltsos, G.T. (2002), "Dynamic behaviour of a single-span beam subjected to load moving with variable speeds", J. Sound Vibr., 258(2), 359-372. https://doi.org/10.1006/jsvi.2002.5141
  27. Michaltsos, G.T., Sophianopoulos, D. and Kounadis, A.N. (1996), "The effect of a moving mass and other parameters on the dynamic response of a simply supported beam", J. Sound Vibr., 191(3), 357-362. https://doi.org/10.1006/jsvi.1996.0127
  28. Ministry of Transport and Communications (1983), Ontario Highway Bridge Design Code, Ontario, Canada.
  29. Nakamura, S. and Kawasaki, T. (2006), "Lateral vibration of footbridges by synchronous walking", J. Constr. Steel Res., 62(11), 1148-1160. https://doi.org/10.1016/j.jcsr.2006.06.023
  30. Raftoyiannis, I.G., Konstantakopoulos, T.G. and Michaltsos, G.T. (2014), "Dynamic response of cable-stayed bridges subjected to sudden failure of cables-the 2D problem", Coupled Syst. Mech., 3(4), 345-365. https://doi.org/10.12989/csm.2014.3.4.345
  31. Roberts, G.W., Mengbrown, C.J. and Dallard, P. (2008), "GPS measurements on the London millennium bridge", Proceedings of the Institution of Civil Engineers: Bridge Engineering, 159(4), 153-161.
  32. Saller, H. (1921), Einfluss Bewegter Last Auf Eisenbahnoberbau Und Brucken, Kreidels Verlag, Berlin, Germany.
  33. Steuding, H. (1934), "Die schwingungen von tragern bei bewegten lasten I", Ingen. Archiv., 5(4), 275-305. https://doi.org/10.1007/BF02084154
  34. Steuding, H. (1935), "Die schwingungen von tragern bei bewegten lasten II", Ingen. Archiv., 6(4), 265-270. https://doi.org/10.1007/BF02084689
  35. Stokes, G.G. (1849), Discussion of a Differential Equation Relating to the Breaking of Railway Bridges, Transactions of the Cambridge Philosophical Society, 707-735.
  36. Sun, B., Zhang, L., Qin, Y. and Xiao, R. (2016), "Economic performance of cable supported bridges", Struct. Eng. Mech., 59(4), 621-652. https://doi.org/10.12989/sem.2016.59.4.621
  37. Timoshenko, S.P. (1922), "On the forced vibration of bridges", Philosoph. Mag., 43, 1018.
  38. Xu, X., Xu, W. and Genin, J. (1997), "A non-linear moving mass problem", J. Sound Vibr., 204(3).
  39. Zhang, X. and Yu, Z. (2015), "Study of seismic performance of cable-stayed-suspension hybrid bridges", Struct. Eng. Mech., 55(6), 1203-1221. https://doi.org/10.12989/sem.2015.55.6.1203
  40. Zhang, X. and Zhang, C. (2016), "Study of seismic performance and structural system of suspension bridges", Struct. Eng. Mech., 60(4), 595-614. https://doi.org/10.12989/sem.2016.60.4.595
  41. Zibdeh, H.S. and Reckwitz, R. (1996), "Moving loads on beams with general boundary conditions", J. Sound Vibr., 195(1).
  42. Zimmermann, H. (1896), Die Schwingungen Eines Tragers Mit Bewegter Last, Centralblatt der Bauverwaltung, 16(23), 249-251.
  43. Zimmermann, H. (1896), Die Schwingungen Eines Tragers Mit Bewegter Last, Centralblatt der Bauverwaltung, 23A, 257-260.
  44. Zimmermann, H. (1896), Die Schwingungen Eines Tragers Mit Bewegter Last, Centralblatt der Bauverwaltung, 24, 264-266
  45. Zimmermann, H. (1896), Die Schwingungen Eines Tragers Mit Bewegter Last, Centralblatt der Bauverwaltung, 26, 288.