DOI QR코드

DOI QR Code

Influence of Trap Passivation by Hydrogen on the Electrical Properties of Polysilicon-Based MSM Photodetector

  • Lee, Jae-Sung (Division of Green Energy Engineering, Uiduk University)
  • Received : 2016.09.19
  • Accepted : 2017.07.21
  • Published : 2017.12.25

Abstract

A new approach to improving the electrical characteristics and optical response of a polysilicon-based metal-semiconductor-metal (MSM) photodetector is proposed. To understand the cause of current restriction in the MSM photodetector, modified trap mechanisms are suggested, which include interfacial electron traps at the metal/polysilicon interface and silicon dangling bonds between silicon crystallite grains. Those traps were passivated using hydrogen ion implantation with subsequent post-annealing. Photodetectors that were ion-implanted under optima conditions exhibited improved photoconductivity and reduced dark current instability, implying that the hydrogen bonds in the polysilicon influence the simultaneous decreases in the density of dangling bonds at grain boundaries and the trapped positive charges at the contact interface.

Keywords

References

  1. M. Casalino, L. Sirleto, L. Moretti, and I. Rendina, Semicond. Sci. Technol., 23, 075001 (2008). [DOI: https://doi.org/10.1088/0268-1242/23/7/075001]
  2. R. Pownall, G. Yuan, T. W. Chen, P. Nikkel, and K. L. Lear, IEEE Photonics Technol. Lett., 19, 513 (2007). [DOI: https://doi.org/10.1109/LPT.2007.893573]
  3. L. Pancheri, M. Scandiuzzo, G.F.D. Betta, D. Stoppa, F. De Nisi, L. Gonzo, and A. Simoni, Solid-State Electro., 49, 175 (2005). [DOI: https://doi.org/10.1016/j.sse.2004.08.010]
  4. H. Marom, M. Ritterband, and M. Eizenberg, Thin Solid Films, 510, 62 (2006). [DOI: https://doi.org/10.1016/j.tsf.2005.12.155]
  5. J. Chen, D. Yang, Z. Xi, and T. Sekiguchi, Physica B: Condensed Matter, 364, 162 (2005). [DOI: https://doi.org/10.1016/j.physb.2005.04.008]
  6. W. Wang, L. Wang, F. Liu, F. Yan, S. Johnston, and M. Al-Jassim, Proc. 2012 38th IEEE Photovoltaic Specialists Conference (IEEE, Austin, USA, 2012) p. 001144. [DOI: https://doi.org/10.1109/PVSC.2012.6317804]
  7. S. Ghanbarzadeh, S. Abbaszadeh, and K. S. Karim, IEEE Electron Device Lett., 35, 235 (2014). [DOI: https://doi.org/10.1109/LED.2013.2295976]
  8. R. P. MacDonald, N. G. Tarr, B. A. Syrett, S. A. Boothroyd, and J. Chrostowski, IEEE Photonics Technol. Lett., 11, 108 (1999). [DOI: https://doi.org/10.1109/68.736410]
  9. J. S. Lee, J. Nanosci. Nanotechnol., 16, 6193 (2016). [DOI: https://doi.org/10.1166/jnn.2016.12109]
  10. E. H. Rhoderick and R. H. Williams, Metal-semiconductor Contacts, 2nd ed. (Clarendon Press, Oxford, 1988) p. 11.
  11. R. W. Lee, R. C. Frank, and D. E. Swets, J. Chem. Phys., 36, 1062 (1962). [DOI: https://doi.org/10.1063/1.1732632]
  12. L. Larcher, IEEE Trans. Electron Devices, 50, 1246 (2003). [DOI: https://doi.org/10.1109/TED.2003.813236]
  13. J. S. Lee, Trans. Electr. Electron. Mater., 13, 188 (2012). [DOI: https://doi.org/10.4313/TEEM.2012.13.4.188]
  14. H. C. Card, IEEE Trans. Electron Devices., 23, 538 (1976). [DOI: https://doi.org/10.1109/T-ED.1976.18449]
  15. H. Uchida and T. Ajioka, Appl. Phys. Lett., 51, 433 (1987). [DOI: https://doi.org/10.1063/1.98413]