References
- Paerl HW, Xu H, McCarthy MJ, et al. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Res. 2011;45:1973-1983. https://doi.org/10.1016/j.watres.2010.09.018
- Smith VH, Schindler DW. Eutrophication science: Where do we go from here? Trends Ecol. Evol. 2009;24:201-207. https://doi.org/10.1016/j.tree.2008.11.009
- Smith VH. Eutrophication of freshwater and coastal marine ecosystems: A global problem. Environ. Sci. Pollut. Res. 2003;10:126-139. https://doi.org/10.1065/espr2002.12.142
- Tong J, Chen Y. Enhanced biological phosphorus removal driven by short-chain fatty acids produced from waste activated sludge alkaline fermentation. Environ. Sci. Technol. 2007;41:7126-7130. https://doi.org/10.1021/es071002n
- Lewis WM, Wurtsbaugh WA, Paerl HW. Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters. Environ. Sci. Technol. 2011;45:10300-10305. https://doi.org/10.1021/es202401p
- Tchobanoglous G, Stensel HD, Tsuchihashi R, Burton F. Wastewater engineering: Treatment and resource recovery. 5th ed. New York: McGraw-Hill, Inc.; 2014.
- Dotro G, Jefferson G, Jones M, Vale P, Cartmell E, Stephenson T. A review of the impact and potential of intermittent aeration on continuous flow nitrifying activated sludge. Environ. Technol. 2011;31:1685-1697.
- Hanhan O, Insel G, Yagci NO, Artan N, Orhon D. Mechanism and design of intermittent aeration activated sludge process for nitrogen removal. J. Environ. Sci. Health Part A 2011;46:9-16. https://doi.org/10.1080/10934529.2011.526073
- Yilmaz G, Lemaire R, Keller J, Yuan Z. Effectiveness of an alternating aerobic, anoxic/anaerobic strategy for maintaining biomass activity of BNR sludge during long-term starvation. Water Res. 2007;41:2590-2598. https://doi.org/10.1016/j.watres.2007.02.011
- Irizar I, Suescun J, Plaza F, Larrea L. Optimizing nitrogen removal in the BioDenitro process. Water Sci. Technol. 2003;48:429-436.
- Hua FL, Tsang YF, Wang YJ, Chan SY, Chua H, Sin SN. Performance study of ceramic microfiltration membrane for oily wastewater treatment. Chem. Eng. J. 2007;128:169-175. https://doi.org/10.1016/j.cej.2006.10.017
- Melin T, Jefferson B, Bixio D, et al. Membrane bioreactor technology for wastewater treatment and reuse. Desalination 2006;187:271-282. https://doi.org/10.1016/j.desal.2005.04.086
- Hofs B, Ogier J, Vries D, Beerendonk EF, Cornelissen ER. Comparison of ceramic and polymeric membrane permeability and fouling using surface water. Sep. Purif. Technol. 2011;79:365-374. https://doi.org/10.1016/j.seppur.2011.03.025
- Barredo-Damas S, Alcaina-Miranda MI, Bes-Pia A, Iborra-Clar MI, Iborra-Clar A, Mendoza-Roca JA. Ceramic membrane behavior in textile wastewater ultrafiltration. Desalination 2010;250:623-628. https://doi.org/10.1016/j.desal.2009.09.037
- Lehman SG, Liu L. Application of ceramic membranes with pre-ozonation for treatment of secondary wastewater effluent. Water Res. 2009;43:2020-2028. https://doi.org/10.1016/j.watres.2009.02.003
- Oh HK, Takizawa S, Ohgaki S, Katayama H, Oguma K, Yu MJ. Removal of organics and viruses using hybrid ceramic MF system without draining PAC. Desalination 2007;202:191-198. https://doi.org/10.1016/j.desal.2005.12.054
- Barredo-Damas S, Alcaina-Miranda MI, Iborra-Clar MI, Bes-Pia A, Mendoza-Roca JA, Iborra-Clar A. Study of the UF process as pretreatment of NF membranes for textile wastewater reuse. Desalination 2006;200:745-747. https://doi.org/10.1016/j.desal.2006.03.497
- Lee S, Cho J. Comparison of ceramic and polymeric membranes for natural organic matter (NOM) removal. Desalination 2004;160:223-232. https://doi.org/10.1016/S0011-9164(04)90025-2
- Weber R, Chmiel H, Mavrov V. Characteristics and application of new ceramic nanofiltration membranes. Desalination 2003; 157:113-125. https://doi.org/10.1016/S0011-9164(03)00390-4
- American Public Health Association, American Water Works Association, Water Environment Federation. Standard methods for the examination of water and wastewater. 22nd ed. Washington D.C.: American Public Health Association; 2012.
- Chon K, Kyongshon H, Cho J. Membrane bioreactor and nanofiltration hybrid system for reclamation of municipal wastewater: Removal of nutrients, organic matter and micropollutants. Bioresour. Technol. 2012;122:181-188. https://doi.org/10.1016/j.biortech.2012.04.048
- Liang Z, Das A, Beerman D, Hu Z. Biomass characteristics of two types of submerged membrane bioreactors for nitrogen removal from wastewater. Water Res. 2010;44;3313-3320. https://doi.org/10.1016/j.watres.2010.03.013
- Monclus H, Sipma J, Ferrero G, Rodriguez-Roda I, Comas J. Biological nutrient removal in an MBR treating municipal wastewater with special focus on biological phosphorus removal. Bioresour. Technol. 2010;101:3984-3991. https://doi.org/10.1016/j.biortech.2010.01.038
- Liu Q, Wang XC. Mechanism of nitrogen removal by a hybrid membrane bioreactor in municipal wastewater treatment. Desalin. Water Treat. 2014;52:5165-5171. https://doi.org/10.1080/19443994.2014.927186
- Ding A, Qu F, Liang H, et al. A novel integrated vertical membrane bioreactor (IVMBR) for removal of nitrogen from synthetic wastewater/domestic sewage. Chem. Eng. J. 2013;223:908-914. https://doi.org/10.1016/j.cej.2013.01.096
- Guo W, Ngo HH, Palmer CG, Xing W, Hu AYJ, Listowski A. Roles of sponge sizes and membrane types in a single stage sponge-submerged membrane bioreactor for improving nutrient removal from wastewater for reuse. Desalination 2009;249:672-676. https://doi.org/10.1016/j.desal.2009.01.030
- Wei CH, Huang X, Aim RB, Yamamoto K, Amy G. Critical flux and chemical cleaning-in-place during the longterm operation of a pilot-scale submerged membrane bioreactor for municipal wastewater treatment. Water Res. 2011;45:863-871. https://doi.org/10.1016/j.watres.2010.09.021
Cited by
- Design of Porous Membranes by Liquid Gating Technology vol.2, pp.6, 2021, https://doi.org/10.1021/accountsmr.1c00024