DOI QR코드

DOI QR Code

Optical and Electrical Properties of Indium Doped PEDOT:PSS

  • Kim, Byoung-Ju (New and Renewable Energy Department, Kyungil University) ;
  • Kang, Kwang-Sun (New and Renewable Energy Department, Kyungil University)
  • Received : 2017.08.14
  • Accepted : 2017.12.05
  • Published : 2017.12.31

Abstract

Various wt. ratios of indium were doped to the poly(3,4-ethylenedioxythiophene)-poly(styreneswulfonate) (PEDOT:PSS) to enhance the conductivity and transmittance. The transmittance of the films increased with increasing the amount of indium. The field emission scanning electron microscope (FESEM) image of 2.54 wt. % of indium doped PEDOT:PSS film shows large number of aggregated indium particles. However, more than 2.54 wt. % of indium doped PEDOT:PSS films showed reduced aggregated indium particles. Moreover, 4.47 wt. % of indium doped PEDOT:PSS film showed no aggregated particles. The resistivity of pure PEDOT:PSS film showed $880k{\Omega}{\cdot}cm$. The resistivity of 1.03 wt. % indium doped film reduced approximately 26 times compared with pure PEDOT:PSS film. The resistivity of indium doped film further reduced with increasing the amount of indium, which showed approximately $0.55k{\Omega}{\cdot}cm$ for the PEDOT:PSS film doped 4.47 wt. % of indium.

Keywords

References

  1. D. McGillivray, J. P. Thomas, M. Abd-Ellah, N. F. Heinig, K. T. Leung, Appl. Mater. Interfaces 8, 34303, 2016. https://doi.org/10.1021/acsami.6b09704
  2. E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, S. A. Choulis, Organic Electronics 10, 61, 2009. https://doi.org/10.1016/j.orgel.2008.10.008
  3. J. Ouyang, C. W. Chu, F. C. Chen, Q. Xu, Y. Yang, Adv. Funct. Mater. 15, 203, 2005. https://doi.org/10.1002/adfm.200400016
  4. H. W. Wang, C. F. Ting, M. K. Hung, C. H. Chiou, Y. L. Liu, Z. Liu, K. R. Ratinac, S. P. Ringer, Nanotechnology 20, 055601, 2009. https://doi.org/10.1088/0957-4484/20/5/055601
  5. A. Muramatsu, K. Kanie, T. Sasaki, M. Nakaya, KONA Power and Particle J. 33, 340, 2016. https://doi.org/10.14356/kona.2016025
  6. H. W. Wang, G. D. Xu, J. R. Zhang, X. Yin, Bull. Korean Chem. Soc. 35, 1999, 2014. https://doi.org/10.5012/bkcs.2014.35.7.1999
  7. A. A. Farah, S. A. Rutledge, A. Schaarschmidt, R. Lai, J. P. Freedman, A. S. Helmy, J. Appl. Phys. 112, 113709, 2012. https://doi.org/10.1063/1.4768265
  8. P. W. Sze, K. W. Lee, P. C. Huang, D. W. Chou, B. S. Kao, C. J. Huang, Energies 10, 716, 2017. https://doi.org/10.3390/en10050716
  9. P. D. Angelo, G. B. Cole, R. N. Sodhi, R. R. Farnood, Nordic Pulp and Paper Res. J. 27, 486, 2012. https://doi.org/10.3183/NPPRJ-2012-27-02-p486-495
  10. B. Xu, H. T. Dai, S. G. Wang, F. C. Chu, C. H. Huang, S. F. Yu, J. L. Zhao, X. W. Sun, R. M. Lin, International J. Photoenergy 952567, 2014.
  11. H. Sun, S. U. Jen, S. C. Chen, S. S. Ye, X. Wang, J. Phys. D: Appl. Phys. 50, 099501, 2017. https://doi.org/10.1088/1361-6463/aa56e9