DOI QR코드

DOI QR Code

Load-bearing capacity of various CAD/CAM monolithic molar crowns under recommended occlusal thickness and reduced occlusal thickness conditions

  • Choi, Sulki (Graduate School of Clinical Dentistry, Ewha Womans University) ;
  • Yoon, Hyung-In (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Park, Eun-Jin (Department of Prosthodontics, School of Medicine, Ewha Womans University)
  • Received : 2016.12.14
  • Accepted : 2017.04.20
  • Published : 2017.12.29

Abstract

PURPOSE. The goal of this study was to evaluate the fracture resistances of various monolithic crowns fabricated by computer-aided design and computer-aided manufacturing (CAD/CAM) with different thickness. MATERIALS AND METHODS. Test dies were fabricated as mandibular molar forms with occlusal reductions using CAD/CAM. With different occlusal thickness (1.0 or 1.5 mm), a polymer-infiltrated ceramic network (Enamic, EN), and zirconia-reinforced lithium silicate (Suprinity, SU and Celtra-Duo, CD) were used to fabricate molar crowns. Lithium disilicate (e.max CAD, EM) crowns (occlusal: 1.5 mm) were fabricated as control. Seventy crowns (n=10 per group) were bonded to abutments and stored in water for 24 hours. A universal testing machine was used to apply load to crown until fracture. The fractured specimens were examined with a scanning electron microscopy. RESULTS. The type of ceramics and the occlusal thickness showed a significant interaction. With a recommended thickness (1.5 mm), the SU revealed the mean load similar to the EM, higher compared with those of the EN and CD. The fracture loads in a reduced thickness (1.0 mm) were similar among the SU, CD, and EN. The mean fracture load of the SU and CD enhanced significantly when the occlusal thickness increased, whereas that of the EN did not. CONCLUSION. The fracture loads of monolithic crowns were differently influenced by the changes in occlusal thickness, depending on the type of ceramics. Within the limitations of this study, all the tested crowns withstood the physiological masticatory loads both at the recommended and reduced occlusal thickness.

Keywords

References

  1. Wang X, Fan D, Swain MV, Zhao K. A systematic review of all-ceramic crowns: clinical fracture rates in relation to restored tooth type. Int J Prosthodont 2012;25:441-50.
  2. Pjetursson BE, Sailer I, Zwahlen M, Hammerle CH. A systematic review of the survival and complication rates of allceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part I: Single crowns. Clin Oral Implants Res 2007;18:73-85. https://doi.org/10.1111/j.1600-0501.2007.01467.x
  3. Raigrodski AJ, Hillstead MB, Meng GK, Chung KH. Survival and complications of zirconia-based fixed dental prostheses: a systematic review. J Prosthet Dent 2012;107:170-7. https://doi.org/10.1016/S0022-3913(12)60051-1
  4. Sailer I, Makarov NA, Thoma DS, Zwahlen M, Pjetursson BE. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs). Dent Mater 2015;31:603-23. https://doi.org/10.1016/j.dental.2015.02.011
  5. Miyazaki T, Nakamura T, Matsumura H, Ban S, Kobayashi T. Current status of zirconia restoration. J Prosthodont Res 2013;57:236-61. https://doi.org/10.1016/j.jpor.2013.09.001
  6. Raigrodski AJ, Yu A, Chiche GJ, Hochstedler JL, Mancl LA, Mohamed SE. Clinical efficacy of veneered zirconium dioxide-based posterior partial fixed dental prostheses: five-year results. J Prosthet Dent 2012;108:214-22. https://doi.org/10.1016/S0022-3913(12)60165-6
  7. Pieger S, Salman A, Bidra AS. Clinical outcomes of lithium disilicate single crowns and partial fixed dental prostheses: a systematic review. J Prosthet Dent 2014;112:22-30. https://doi.org/10.1016/j.prosdent.2014.01.005
  8. Agustin-Panadero R, Roman-Rodriguez JL, Ferreiroa A, Sola-Ruiz MF, Fons-Font A. Zirconia in fixed prosthesis. A literature review. J Clin Exp Dent 2014;6:e66-73.
  9. Larsson C, Wennerberg A. The clinical success of zirconiabased crowns: a systematic review. Int J Prosthodont 2014;27:33-43. https://doi.org/10.11607/ijp.3647
  10. Beuer F, Stimmelmayr M, Gueth JF, Edelhoff D, Naumann M. In vitro performance of full-contour zirconia single crowns. Dent Mater 2012;28:449-56. https://doi.org/10.1016/j.dental.2011.11.024
  11. Denry I, Kelly JR. Emerging ceramic-based materials for dentistry. J Dent Res 2014;93:1235-42. https://doi.org/10.1177/0022034514553627
  12. Zhao K, Wei YR, Pan Y, Zhang XP, Swain MV, Guess PC. Influence of veneer and cyclic loading on failure behavior of lithium disilicate glass-ceramic molar crowns. Dent Mater 2014;30:164-71. https://doi.org/10.1016/j.dental.2013.11.001
  13. Guess PC, Zavanelli RA, Silva NR, Bonfante EA, Coelho PG, Thompson VP. Monolithic CAD/CAM lithium disilicate versus veneered Y-TZP crowns: comparison of failure modes and reliability after fatigue. Int J Prosthodont 2010;23:434-42.
  14. Batson ER, Cooper LF, Duqum I, Mendonca G. Clinical outcomes of three different crown systems with CAD/CAM technology. J Prosthet Dent 2014;112:770-7. https://doi.org/10.1016/j.prosdent.2014.05.002
  15. Li RW, Chow TW, Matinlinna JP. Ceramic dental biomaterials and CAD/CAM technology: state of the art. J Prosthodont Res 2014;58:208-16. https://doi.org/10.1016/j.jpor.2014.07.003
  16. He LH, Swain M. A novel polymer infiltrated ceramic dental material. Dent Mater 2011;27:527-34. https://doi.org/10.1016/j.dental.2011.02.002
  17. Coldea A, Swain MV, Thiel N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent Mater 2013;29:419-26. https://doi.org/10.1016/j.dental.2013.01.002
  18. Coldea A, Swain MV, Thiel N. In-vitro strength degradation of dental ceramics and novel PICN material by sharp indentation. J Mech Behav Biomed Mater 2013;26:34-42. https://doi.org/10.1016/j.jmbbm.2013.05.004
  19. Coldea A, Swain MV, Thiel N. Hertzian contact response and damage tolerance of dental ceramics. J Mech Behav Biomed Mater 2014;34:124-33. https://doi.org/10.1016/j.jmbbm.2014.02.002
  20. Mormann WH, Stawarczyk B, Ender A, Sener B, Attin T, Mehl A. Wear characteristics of current aesthetic dental re-storative CAD/CAM materials: two-body wear, gloss retention, roughness and Martens hardness. J Mech Behav Biomed Mater 2013;20:113-25. https://doi.org/10.1016/j.jmbbm.2013.01.003
  21. Coldea A, Fischer J, Swain MV, Thiel N. Damage tolerance of indirect restorative materials (including PICN) after simulated bur adjustments. Dent Mater 2015;31:684-94. https://doi.org/10.1016/j.dental.2015.03.007
  22. Ankyu S, Nakamura K, Harada A, Hong G, Kanno T, Niwano Y, Ortengren U, Egusa H. Fatigue analysis of computer-aided design/computer-aided manufacturing resinbased composite vs. lithium disilicate glass-ceramic. Eur J Oral Sci 2016;124:387-95. https://doi.org/10.1111/eos.12278
  23. Zesewitz TF, Knauber AW, Northdurft FP. Fracture resistance of a selection of full-contour all-ceramic crowns: an in vitro study. Int J Prosthodont 2014;27:264-6. https://doi.org/10.11607/ijp.3815
  24. Guncu MB, Cakan U, Muhtarogullari M, Canay S. Zirconiabased crowns up to 5 years in function: a retrospective clinical study and evaluation of prosthetic restorations and failures. Int J Prosthodont 2015;28:152-7. https://doi.org/10.11607/ijp.4168
  25. Kikuchi M, Korioth TW, Hannam AG. The association among occlusal contacts, clenching effort, and bite force distribution in man. J Dent Res 1997;76:1316-25. https://doi.org/10.1177/00220345970760061201
  26. Ferrario VF, Sforza C, Zanotti G, Tartaglia GM. Maximal bite forces in healthy young adults as predicted by surface electromyography. J Dent 2004;32:451-7. https://doi.org/10.1016/j.jdent.2004.02.009
  27. Varga S, Spalj S, Lapter Varga M, Anic Milosevic S, Mestrovic S, Slaj M. Maximum voluntary molar bite force in subjects with normal occlusion. Eur J Orthod 2011;33:427-33. https://doi.org/10.1093/ejo/cjq097
  28. Wegner LD, Gibson LJ. The fracture toughness behaviour of interpenetrating phase composites. Int J Mech Sci 2001;43:1771-91. https://doi.org/10.1016/S0020-7403(01)00016-9
  29. Thompson VP, Rekow DE. Dental ceramics and the molar crown testing ground. J Appl Oral Sci 2004;12:26-36. https://doi.org/10.1590/S1678-77572004000500004
  30. Chen C, Trindade FZ, de Jager N, Kleverlaan CJ, Feilzer AJ. The fracture resistance of a CAD/CAM Resin Nano Ceramic (RNC) and a CAD ceramic at different thicknesses. Dent Mater 2014;30:954-62. https://doi.org/10.1016/j.dental.2014.05.018
  31. Preis V, Behr M, Hahnel S, Rosentritt M. Influence of cementation on in vitro performance, marginal adaptation and fracture resistance of CAD/CAM-fabricated ZLS molar crowns. Dent Mater 2015;31:1363-9. https://doi.org/10.1016/j.dental.2015.08.154
  32. Nordahl N, Vult von Steyern P, Larsson C. Fracture strength of ceramic monolithic crown systems of different thickness. J Oral Sci 2015;57:255-61. https://doi.org/10.2334/josnusd.57.255
  33. Schultheis S, Strub JR, Gerds TA, Guess PC. Monolithic and bi-layer CAD/CAM lithium-disilicate versus metal-ceramic fixed dental prostheses: comparison of fracture loads and failure modes after fatigue. Clin Oral Investig 2013;17:1407-13. https://doi.org/10.1007/s00784-012-0830-1
  34. Coelho PG, Bonfante EA, Silva NR, Rekow ED, Thompson VP. Laboratory simulation of Y-TZP all-ceramic crown clinical failures. J Dent Res 2009;88:382-6. https://doi.org/10.1177/0022034509333968
  35. Choi YS, Kim SH, Lee JB, Han JS, Yeo IS. In vitro evaluation of fracture strength of zirconia restoration veneered with various ceramic materials. J Adv Prosthodont 2012;4:162-9. https://doi.org/10.4047/jap.2012.4.3.162
  36. Harada A, Nakamura K, Kanno T, Inagaki R, Ortengren U, Niwano Y, Sasaki K, Egusa H. Fracture resistance of computer-aided design/computer-aided manufacturing-generated composite resin-based molar crowns. Eur J Oral Sci 2015;123:122-9. https://doi.org/10.1111/eos.12173
  37. Yucel MT, Yondem I, Aykent F, Eraslan O. Influence of the supporting die structures on the fracture strength of all-ceramic materials. Clin Oral Investig 2012;16:1105-10. https://doi.org/10.1007/s00784-011-0606-z
  38. Dittmer MP, Kohorst P, Borchers L, Stiesch M. Influence of the supporting structure on stress distribution in all-ceramic FPDs. Int J Prosthodont 2010;23:63-8.
  39. Scherrer SS, de Rijk WG. The fracture resistance of all-ceramic crowns on supporting structures with different elastic moduli. Int J Prosthodont. 1993;6:462-7.
  40. Chun K, Choi H, Lee J. Comparison of mechanical property and role between enamel and dentin in the human teeth. J Dent Biomech 2014;5:1758736014520809.
  41. Stanford WJ, Paffenbarger GC, Kumpula JW, Sweeney WT. Determination of some compressive properties of human enamel and dentin. J Am Dent Assoc 1958;57:487-95. https://doi.org/10.14219/jada.archive.1958.0194
  42. Arcis RW, Lopez-Macipe A, Toledano M, Osorio E, Rodriguez-Clemente R, Murtra J, Fanovich MA, Pascual CD. Mechanical properties of visible light-cured resins reinforced with hydroxyapatite for dental restoration. Dent Mater 2002;18:49-57. https://doi.org/10.1016/S0109-5641(01)00019-7
  43. Oilo M, Kvam K, Tibballs JE, Gjerdet NR. Clinically relevant fracture testing of all-ceramic crowns. Dent Mater 2013;29:815-23. https://doi.org/10.1016/j.dental.2013.04.026
  44. Nakamura K, Harada A, Inagaki R, Kanno T, Niwano Y, Milleding P, Ortengren U. Fracture resistance of monolithic zirconia molar crowns with reduced thickness. Acta Odontol Scand 2015;73:602-8. https://doi.org/10.3109/00016357.2015.1007479
  45. Johansson C, Kmet G, Rivera J, Larsson C, Vult Von Steyern P. Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide-stabilized zirconium dioxide compared to porcelain-veneered crowns and lithium disilicate crowns. Acta Odontol Scand 2014;72:145-53. https://doi.org/10.3109/00016357.2013.822098
  46. Sun T, Zhou S, Lai R, Liu R, Ma S, Zhou Z, Longquan S. Load-bearing capacity and the recommended thickness of dental monolithic zirconia single crowns. J Mech Behav Biomed Mater 2014;35:93-101. https://doi.org/10.1016/j.jmbbm.2014.03.014
  47. de Kok P, Kleverlaan CJ, de Jager N, Kuijs R, Feilzer AJ. Mechanical performance of implant-supported posterior crowns. J Prosthet Dent 2015;114:59-66. https://doi.org/10.1016/j.prosdent.2014.10.015
  48. Seydler B, Rues S, Muller D, Schmitter M. In vitro fracture load of monolithic lithium disilicate ceramic molar crowns with different wall thicknesses. Clin Oral Investig 2014;18:1165-71. https://doi.org/10.1007/s00784-013-1062-8
  49. Campos RE, Soares PV, Versluis A, de O Junior OB, Ambrosano GM, Nunes IF. Crown fracture: Failure load, stress distribution, and fractographic analysis. J Prosthet Dent 2015;114:447-55. https://doi.org/10.1016/j.prosdent.2015.02.023
  50. Harada A, Nakamura K, Kanno T, Inagaki R, Ortengren U, Niwano Y, Sasaki K, Egusa H. Fracture resistance of computer-aided design/computer-aided manufacturing-generated composite resin-based molar crowns. Eur J Oral Sci 2015;123:122-9. https://doi.org/10.1111/eos.12173

Cited by

  1. Fracture Resistance of Various Thickness e.max CAD Lithium Disilicate Crowns Cemented on Different Supporting Substrates: An In Vitro Study vol.28, pp.9, 2019, https://doi.org/10.1111/jopr.13108
  2. Effect of different preparation designs and all ceramic materials on fracture strength of molar endocrowns vol.18, pp.None, 2017, https://doi.org/10.1177/2280800020947329
  3. Influence of CAD/CAM Fabrication and Sintering Procedures on the Fracture Load of Full-Contour Monolithic Zirconia Crowns as a Function of Material Thickness vol.45, pp.2, 2020, https://doi.org/10.2341/19-086-l
  4. New Intraoral Scanner-Based Chairside Measurement Method to Investigate the Internal Fit of Crowns: A Clinical Trial vol.17, pp.7, 2017, https://doi.org/10.3390/ijerph17072182
  5. Fracture resistance and marginal fit of the zirconia crowns with varied occlusal thickness vol.12, pp.5, 2017, https://doi.org/10.4047/jap.2020.12.5.283
  6. Monitoring fatigue damage in different CAD/CAM materials: A new approach with optical coherence tomography vol.65, pp.1, 2017, https://doi.org/10.2186/jpr.jpor_2019_466
  7. Microleakage of thin-walled monolithic zirconia and polymer-containing CAD-CAM crowns vol.125, pp.2, 2017, https://doi.org/10.1016/j.prosdent.2019.11.026
  8. Minimal tooth preparation for posterior monolithic ceramic crowns: Effect on the mechanical behavior, reliability and translucency vol.37, pp.3, 2017, https://doi.org/10.1016/j.dental.2020.11.001