References
- Wang X, Fan D, Swain MV, Zhao K. A systematic review of all-ceramic crowns: clinical fracture rates in relation to restored tooth type. Int J Prosthodont 2012;25:441-50.
- Pjetursson BE, Sailer I, Zwahlen M, Hammerle CH. A systematic review of the survival and complication rates of allceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part I: Single crowns. Clin Oral Implants Res 2007;18:73-85. https://doi.org/10.1111/j.1600-0501.2007.01467.x
- Raigrodski AJ, Hillstead MB, Meng GK, Chung KH. Survival and complications of zirconia-based fixed dental prostheses: a systematic review. J Prosthet Dent 2012;107:170-7. https://doi.org/10.1016/S0022-3913(12)60051-1
- Sailer I, Makarov NA, Thoma DS, Zwahlen M, Pjetursson BE. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs). Dent Mater 2015;31:603-23. https://doi.org/10.1016/j.dental.2015.02.011
- Miyazaki T, Nakamura T, Matsumura H, Ban S, Kobayashi T. Current status of zirconia restoration. J Prosthodont Res 2013;57:236-61. https://doi.org/10.1016/j.jpor.2013.09.001
- Raigrodski AJ, Yu A, Chiche GJ, Hochstedler JL, Mancl LA, Mohamed SE. Clinical efficacy of veneered zirconium dioxide-based posterior partial fixed dental prostheses: five-year results. J Prosthet Dent 2012;108:214-22. https://doi.org/10.1016/S0022-3913(12)60165-6
- Pieger S, Salman A, Bidra AS. Clinical outcomes of lithium disilicate single crowns and partial fixed dental prostheses: a systematic review. J Prosthet Dent 2014;112:22-30. https://doi.org/10.1016/j.prosdent.2014.01.005
- Agustin-Panadero R, Roman-Rodriguez JL, Ferreiroa A, Sola-Ruiz MF, Fons-Font A. Zirconia in fixed prosthesis. A literature review. J Clin Exp Dent 2014;6:e66-73.
- Larsson C, Wennerberg A. The clinical success of zirconiabased crowns: a systematic review. Int J Prosthodont 2014;27:33-43. https://doi.org/10.11607/ijp.3647
- Beuer F, Stimmelmayr M, Gueth JF, Edelhoff D, Naumann M. In vitro performance of full-contour zirconia single crowns. Dent Mater 2012;28:449-56. https://doi.org/10.1016/j.dental.2011.11.024
- Denry I, Kelly JR. Emerging ceramic-based materials for dentistry. J Dent Res 2014;93:1235-42. https://doi.org/10.1177/0022034514553627
- Zhao K, Wei YR, Pan Y, Zhang XP, Swain MV, Guess PC. Influence of veneer and cyclic loading on failure behavior of lithium disilicate glass-ceramic molar crowns. Dent Mater 2014;30:164-71. https://doi.org/10.1016/j.dental.2013.11.001
- Guess PC, Zavanelli RA, Silva NR, Bonfante EA, Coelho PG, Thompson VP. Monolithic CAD/CAM lithium disilicate versus veneered Y-TZP crowns: comparison of failure modes and reliability after fatigue. Int J Prosthodont 2010;23:434-42.
- Batson ER, Cooper LF, Duqum I, Mendonca G. Clinical outcomes of three different crown systems with CAD/CAM technology. J Prosthet Dent 2014;112:770-7. https://doi.org/10.1016/j.prosdent.2014.05.002
- Li RW, Chow TW, Matinlinna JP. Ceramic dental biomaterials and CAD/CAM technology: state of the art. J Prosthodont Res 2014;58:208-16. https://doi.org/10.1016/j.jpor.2014.07.003
- He LH, Swain M. A novel polymer infiltrated ceramic dental material. Dent Mater 2011;27:527-34. https://doi.org/10.1016/j.dental.2011.02.002
- Coldea A, Swain MV, Thiel N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent Mater 2013;29:419-26. https://doi.org/10.1016/j.dental.2013.01.002
- Coldea A, Swain MV, Thiel N. In-vitro strength degradation of dental ceramics and novel PICN material by sharp indentation. J Mech Behav Biomed Mater 2013;26:34-42. https://doi.org/10.1016/j.jmbbm.2013.05.004
- Coldea A, Swain MV, Thiel N. Hertzian contact response and damage tolerance of dental ceramics. J Mech Behav Biomed Mater 2014;34:124-33. https://doi.org/10.1016/j.jmbbm.2014.02.002
- Mormann WH, Stawarczyk B, Ender A, Sener B, Attin T, Mehl A. Wear characteristics of current aesthetic dental re-storative CAD/CAM materials: two-body wear, gloss retention, roughness and Martens hardness. J Mech Behav Biomed Mater 2013;20:113-25. https://doi.org/10.1016/j.jmbbm.2013.01.003
- Coldea A, Fischer J, Swain MV, Thiel N. Damage tolerance of indirect restorative materials (including PICN) after simulated bur adjustments. Dent Mater 2015;31:684-94. https://doi.org/10.1016/j.dental.2015.03.007
- Ankyu S, Nakamura K, Harada A, Hong G, Kanno T, Niwano Y, Ortengren U, Egusa H. Fatigue analysis of computer-aided design/computer-aided manufacturing resinbased composite vs. lithium disilicate glass-ceramic. Eur J Oral Sci 2016;124:387-95. https://doi.org/10.1111/eos.12278
- Zesewitz TF, Knauber AW, Northdurft FP. Fracture resistance of a selection of full-contour all-ceramic crowns: an in vitro study. Int J Prosthodont 2014;27:264-6. https://doi.org/10.11607/ijp.3815
- Guncu MB, Cakan U, Muhtarogullari M, Canay S. Zirconiabased crowns up to 5 years in function: a retrospective clinical study and evaluation of prosthetic restorations and failures. Int J Prosthodont 2015;28:152-7. https://doi.org/10.11607/ijp.4168
- Kikuchi M, Korioth TW, Hannam AG. The association among occlusal contacts, clenching effort, and bite force distribution in man. J Dent Res 1997;76:1316-25. https://doi.org/10.1177/00220345970760061201
- Ferrario VF, Sforza C, Zanotti G, Tartaglia GM. Maximal bite forces in healthy young adults as predicted by surface electromyography. J Dent 2004;32:451-7. https://doi.org/10.1016/j.jdent.2004.02.009
- Varga S, Spalj S, Lapter Varga M, Anic Milosevic S, Mestrovic S, Slaj M. Maximum voluntary molar bite force in subjects with normal occlusion. Eur J Orthod 2011;33:427-33. https://doi.org/10.1093/ejo/cjq097
- Wegner LD, Gibson LJ. The fracture toughness behaviour of interpenetrating phase composites. Int J Mech Sci 2001;43:1771-91. https://doi.org/10.1016/S0020-7403(01)00016-9
- Thompson VP, Rekow DE. Dental ceramics and the molar crown testing ground. J Appl Oral Sci 2004;12:26-36. https://doi.org/10.1590/S1678-77572004000500004
- Chen C, Trindade FZ, de Jager N, Kleverlaan CJ, Feilzer AJ. The fracture resistance of a CAD/CAM Resin Nano Ceramic (RNC) and a CAD ceramic at different thicknesses. Dent Mater 2014;30:954-62. https://doi.org/10.1016/j.dental.2014.05.018
- Preis V, Behr M, Hahnel S, Rosentritt M. Influence of cementation on in vitro performance, marginal adaptation and fracture resistance of CAD/CAM-fabricated ZLS molar crowns. Dent Mater 2015;31:1363-9. https://doi.org/10.1016/j.dental.2015.08.154
- Nordahl N, Vult von Steyern P, Larsson C. Fracture strength of ceramic monolithic crown systems of different thickness. J Oral Sci 2015;57:255-61. https://doi.org/10.2334/josnusd.57.255
- Schultheis S, Strub JR, Gerds TA, Guess PC. Monolithic and bi-layer CAD/CAM lithium-disilicate versus metal-ceramic fixed dental prostheses: comparison of fracture loads and failure modes after fatigue. Clin Oral Investig 2013;17:1407-13. https://doi.org/10.1007/s00784-012-0830-1
- Coelho PG, Bonfante EA, Silva NR, Rekow ED, Thompson VP. Laboratory simulation of Y-TZP all-ceramic crown clinical failures. J Dent Res 2009;88:382-6. https://doi.org/10.1177/0022034509333968
- Choi YS, Kim SH, Lee JB, Han JS, Yeo IS. In vitro evaluation of fracture strength of zirconia restoration veneered with various ceramic materials. J Adv Prosthodont 2012;4:162-9. https://doi.org/10.4047/jap.2012.4.3.162
- Harada A, Nakamura K, Kanno T, Inagaki R, Ortengren U, Niwano Y, Sasaki K, Egusa H. Fracture resistance of computer-aided design/computer-aided manufacturing-generated composite resin-based molar crowns. Eur J Oral Sci 2015;123:122-9. https://doi.org/10.1111/eos.12173
- Yucel MT, Yondem I, Aykent F, Eraslan O. Influence of the supporting die structures on the fracture strength of all-ceramic materials. Clin Oral Investig 2012;16:1105-10. https://doi.org/10.1007/s00784-011-0606-z
- Dittmer MP, Kohorst P, Borchers L, Stiesch M. Influence of the supporting structure on stress distribution in all-ceramic FPDs. Int J Prosthodont 2010;23:63-8.
- Scherrer SS, de Rijk WG. The fracture resistance of all-ceramic crowns on supporting structures with different elastic moduli. Int J Prosthodont. 1993;6:462-7.
- Chun K, Choi H, Lee J. Comparison of mechanical property and role between enamel and dentin in the human teeth. J Dent Biomech 2014;5:1758736014520809.
- Stanford WJ, Paffenbarger GC, Kumpula JW, Sweeney WT. Determination of some compressive properties of human enamel and dentin. J Am Dent Assoc 1958;57:487-95. https://doi.org/10.14219/jada.archive.1958.0194
- Arcis RW, Lopez-Macipe A, Toledano M, Osorio E, Rodriguez-Clemente R, Murtra J, Fanovich MA, Pascual CD. Mechanical properties of visible light-cured resins reinforced with hydroxyapatite for dental restoration. Dent Mater 2002;18:49-57. https://doi.org/10.1016/S0109-5641(01)00019-7
- Oilo M, Kvam K, Tibballs JE, Gjerdet NR. Clinically relevant fracture testing of all-ceramic crowns. Dent Mater 2013;29:815-23. https://doi.org/10.1016/j.dental.2013.04.026
- Nakamura K, Harada A, Inagaki R, Kanno T, Niwano Y, Milleding P, Ortengren U. Fracture resistance of monolithic zirconia molar crowns with reduced thickness. Acta Odontol Scand 2015;73:602-8. https://doi.org/10.3109/00016357.2015.1007479
- Johansson C, Kmet G, Rivera J, Larsson C, Vult Von Steyern P. Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide-stabilized zirconium dioxide compared to porcelain-veneered crowns and lithium disilicate crowns. Acta Odontol Scand 2014;72:145-53. https://doi.org/10.3109/00016357.2013.822098
- Sun T, Zhou S, Lai R, Liu R, Ma S, Zhou Z, Longquan S. Load-bearing capacity and the recommended thickness of dental monolithic zirconia single crowns. J Mech Behav Biomed Mater 2014;35:93-101. https://doi.org/10.1016/j.jmbbm.2014.03.014
- de Kok P, Kleverlaan CJ, de Jager N, Kuijs R, Feilzer AJ. Mechanical performance of implant-supported posterior crowns. J Prosthet Dent 2015;114:59-66. https://doi.org/10.1016/j.prosdent.2014.10.015
- Seydler B, Rues S, Muller D, Schmitter M. In vitro fracture load of monolithic lithium disilicate ceramic molar crowns with different wall thicknesses. Clin Oral Investig 2014;18:1165-71. https://doi.org/10.1007/s00784-013-1062-8
- Campos RE, Soares PV, Versluis A, de O Junior OB, Ambrosano GM, Nunes IF. Crown fracture: Failure load, stress distribution, and fractographic analysis. J Prosthet Dent 2015;114:447-55. https://doi.org/10.1016/j.prosdent.2015.02.023
- Harada A, Nakamura K, Kanno T, Inagaki R, Ortengren U, Niwano Y, Sasaki K, Egusa H. Fracture resistance of computer-aided design/computer-aided manufacturing-generated composite resin-based molar crowns. Eur J Oral Sci 2015;123:122-9. https://doi.org/10.1111/eos.12173
Cited by
- Fracture Resistance of Various Thickness e.max CAD Lithium Disilicate Crowns Cemented on Different Supporting Substrates: An In Vitro Study vol.28, pp.9, 2019, https://doi.org/10.1111/jopr.13108
- Effect of different preparation designs and all ceramic materials on fracture strength of molar endocrowns vol.18, pp.None, 2017, https://doi.org/10.1177/2280800020947329
- Influence of CAD/CAM Fabrication and Sintering Procedures on the Fracture Load of Full-Contour Monolithic Zirconia Crowns as a Function of Material Thickness vol.45, pp.2, 2020, https://doi.org/10.2341/19-086-l
- New Intraoral Scanner-Based Chairside Measurement Method to Investigate the Internal Fit of Crowns: A Clinical Trial vol.17, pp.7, 2017, https://doi.org/10.3390/ijerph17072182
- Fracture resistance and marginal fit of the zirconia crowns with varied occlusal thickness vol.12, pp.5, 2017, https://doi.org/10.4047/jap.2020.12.5.283
- Monitoring fatigue damage in different CAD/CAM materials: A new approach with optical coherence tomography vol.65, pp.1, 2017, https://doi.org/10.2186/jpr.jpor_2019_466
- Microleakage of thin-walled monolithic zirconia and polymer-containing CAD-CAM crowns vol.125, pp.2, 2017, https://doi.org/10.1016/j.prosdent.2019.11.026
- Minimal tooth preparation for posterior monolithic ceramic crowns: Effect on the mechanical behavior, reliability and translucency vol.37, pp.3, 2017, https://doi.org/10.1016/j.dental.2020.11.001