References
- Ahmad, M. and Farooq, S. (1985). Influence of Bubble Sizes on Ozone Solubility Utilization and Disinfection. Water Sci. Technol., 17, 1081-1090. https://doi.org/10.2166/wst.1985.0203
- Beltran, F.J. (2003). Ozone reaction kinetics for water and wastewater systems. CRC press, Boca Raton, FL., USA. https://doi.org/10.1201/9780203509173
- Chen, K.K. (2009). Bathing Pool Assembly with Water Full of Nano-Scale Ozone Bubbles for Rehabilitation, U.S. Patent, USA.
- Chu, L.B., Xing, X.H., Yu, A.F., Sun, X.L. and Jurcik, B. (2008). Enhanced treatment of practical textile wastewater by microbubble ozonation, Process Saf. Environ., 86, 389-393. https://doi.org/10.1016/j.psep.2008.02.005
- Chu, L.B., Xing, X.H., Yu, A.F., Zhou, Y.N., Sun, X.L., Jurcik, B. (2007). Enhanced ozonation of simulated dyestuff wastewater by microbubbles. Chemosphere, 68, 1854-1860. https://doi.org/10.1016/j.chemosphere.2007.03.014
- Eikebrokk, B., Vogt, R.D. and Liltved, H. (2004). NOM increase in Northern European source waters: discussion of possible causes and impacts on coagulation/contact filtration processes. Wa. Sci. Technol., 4(4), 47-54.
- He, H., Zheng, L., Li, Y. and Song, W. (2015). Research on the Feasibility of Spraying Micro/Nano Bubble Ozonated Water for Airborne Disease Prevention, Ozone-Sci. Eng., 37(1), 78-84. https://doi.org/10.1080/01919512.2014.913473
- Hu, L. and Xia Z. (2018). Application of ozone micro-nano-bubbles to ground water remediation. J. Hazard. Mater., 342, 446-453. https://doi.org/10.1016/j.jhazmat.2017.08.030
- Ikeura, H., Kobayashi, F. and Tamaki, M. (2011). Removal of residual pesticide, fenitrothion, in vegetables by using ozone microbubbles generated by different methods. J. Food Eng., 103, 345-349. https://doi.org/10.1016/j.jfoodeng.2010.11.002
- Jabesa, A. and Ghosh, P. (2016). Removal of diethyl phthalate from water by ozone microbubbles in a pilot plant, J. Environ. Manage., 180, 476-484. https://doi.org/10.1016/j.jenvman.2016.05.072
- Khuntia, S., Majumder, S.K. and Ghosh P. (2013). Removal of Ammonia from Water by Ozone Microbubbles. Ind. Eng. Chem. Res., 52, 318-326. https://doi.org/10.1021/ie302212p
- Khuntia, S., Majumder, S.K. and Ghosh, P. (2014). Oxidation of As(III) to As(V) using ozone microbubbles. Chemosphere, 97, 120-124. https://doi.org/10.1016/j.chemosphere.2013.10.046
- Khuntia, S., Majumder, S.K. and Ghosh, P. (2015). Quantitative prediction of generation of hydroxyl radicals from ozone microbubbles. Chem. Eng. Res. Des., 98, 231-239 https://doi.org/10.1016/j.cherd.2015.04.003
- Kobayashi, F., Ikeura, H., Ohsato, S., Goto, T. and Tamaki M. (2011). Disinfection using ozone microbubbles to inactivate Fusarium oxysporum f. sp. melonis and Pectobacterium carotovorum subsp. Carotovorum. Crop Prot., 30, 1514-1518. https://doi.org/10.1016/j.cropro.2011.07.018
- Li, P. and Tsuge, H. (2006). Ozone Transfer in a New Gas-Induced Contactor with Microbubbles. J. Chem. Eng. Jap., 39(11), 1213-1220. https://doi.org/10.1252/jcej.39.1213
- Liu, S., Wang, Q., Sun, T., Wu, C. and Shi, Y. (2011). The effect of different types of micro-bubbles on the performance of the coagulation flotation process for coke waste-water. J. Chem. Technol. Biot., 87, 206-215.
- Liu, S., Wang, Q., Zhai, X., Huang, Q., and Huang, P. (2010). Improved pretreatment (coagulation-floatation and ozonation) of younger landfill leachate by microbubbles, Water Environ. Res., 82, 657-65. https://doi.org/10.2175/106143010X12609736966522
- Loeb, B.L., Thompson, C.M., Drago, J., Takahara, H. and Baig, S. (2012). Worldwide Ozone Capacity for Treatment of Drinking Water and Wastewater: A Review. Ozone-Sci. Eng., 34(1), 64-77. https://doi.org/10.1080/01919512.2012.640251
- Shin, W.T., Mirmiran, A., Yiacoumi, S. and Tsouris, C. (1999). Ozonation using microbubbles formed by electric fields, Sep. Purif. Technol., 15: 271-282. https://doi.org/10.1016/S1383-5866(98)00107-5
- Sumikura, M., Hidaka, M., Murakami, H., Nobutomo, Y. and Murakami, T. (2007). Ozone micro-bubble disinfection method for wastewater reuse system, Water Sci Technol., 56(5), 53-61. https://doi.org/10.2166/wst.2007.556
- Takahashi, M., Chiba, K. and Li, P. (2007). Formation of hydroxyl radicals by collapsing ozone microbubbles under strongly acidic conditions. J. Phys. Chem. B, 111, 11443-11446. https://doi.org/10.1021/jp074727m
- Walker, A.B., Tsouris, C., DePaoli, D.W. and Klasson, K.T. (2001). Ozonation of Soluble Organics in Aqueous Solutions Using Microbubbles, Ozone-Sci. Eng., 23(1), 77-87. https://doi.org/10.1080/01919510108961990
- Yasuda, K. and Ban, N. (2012). Wastewater Treatment for Bioethanol Production System Using Ozone Microbubbles. J. Chem. Eng. Jap., 45(9), 672-677. https://doi.org/10.1252/jcej.12we056
- Zhang, F., Xi J., Huang J.-J. and Hu H.-Y. (2013). Effect of inlet ozone concentration on the performance of a microbubble ozonation system for inactivation of Bacillus subtilis spores, Sep. Purif. Technol., 114, 126-33. https://doi.org/10.1016/j.seppur.2013.04.034
- Zheng, T., Wang, Q., Zhang, T., Shi, Z., Tian, Y., Shi, S., Smale, N. and Wang, J. (2015). Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry. J. Hazard. Mater., 287, 412-420. https://doi.org/10.1016/j.jhazmat.2015.01.069
Cited by
- Using design of experiments to understand and predict polymer microcapsule core‐shell architecture vol.138, pp.13, 2017, https://doi.org/10.1002/app.50100
- Control of Vibrio parahaemolyticus (AHPND strain) and improvement of water quality using nanobubble technology vol.52, pp.6, 2017, https://doi.org/10.1111/are.15124
- Direct Oxidation of Antibiotics from Aqueous Solution by Ozonation with Microbubbles vol.1973, pp.1, 2021, https://doi.org/10.1088/1742-6596/1973/1/012157
- Global trends and characteristics of nano- and micro-bubbles research in environmental engineering over the past two decades: A scientometric analysis vol.785, pp.None, 2021, https://doi.org/10.1016/j.scitotenv.2021.147362
- Free radical degradation in aqueous solution by blowing hydrogen and carbon dioxide nanobubbles vol.11, pp.1, 2017, https://doi.org/10.1038/s41598-021-82717-z
- Disinfection applications of ozone micro- and nanobubbles vol.8, pp.12, 2017, https://doi.org/10.1039/d1en00700a