DOI QR코드

DOI QR Code

A Study on IoT and Cloud-based Real-time Bridge Height Measurement Service

사물인터넷과 클라우드 기반의 실시간 교량 높이 계측 서비스 연구

  • 최차환 (한국국토정보공사 부산울산지역본부) ;
  • 천영만 (한국국토정보공사 부산울산지역본부) ;
  • 정승훈 (한국국토정보공사 부산울산지역본부) ;
  • 차득기 (한국국토정보공사 공간정보연구원) ;
  • 이영재 (부산항만공사 조사)
  • Received : 2017.10.10
  • Accepted : 2017.12.08
  • Published : 2017.12.10

Abstract

Currently, the height of ships that can pass under Busan Harbor Bridge is limited to 60m or shorter, so that large-sized ships of 60m or taller cannot use Busan Harbor international passenger terminal. Accordingly, this study has developed a service which measures continuously the change of bridge height by water level changes and provides such in real-time for safe bridge passage of large-sized ships of 60m or taller. The measurement system comprised of high-precision laser distance measurement device, GPS sensor, optical module, and damping structure is used to measure the bridge height change according to tide level changes, and the measured information is provided in real-time through cloud-based mobile app. Also, in order to secure objective bridge height data for changes to height limits and navigation supports, the observation data was analyzed and forecast model was drawn. As a result, it became an objective evidence to revise the passage height rules of the Busan Port Bridge from 60 meters to 63 meters.

현재 부산항대교 아래를 통과할 수 있는 선박의 높이는 60m 이하로 제한되어 있어, 60m 이상의 대형 선박은 부산항 국제여객터미널을 이용하지 못하고 있다. 이에 본 연구에서는 60m 이상의 대형 선박의 안전한 교량 통과를 위하여 해수면 변화에 의한 교량 높이 변화를 지속적으로 측정하고, 이를 실시간으로 제공하는 서비스를 개발하였다. 고정밀 레이저거리측정기, GPS 센서, 광모듈, 댐핑구조물로 구성된 계측시스템을 통하여 해수면 변화에 따른 교량 높이 변화를 측정하고, 측정된 정보는 클라우드 기반의 모바일 앱을 통하여 실시간 제공된다. 또한 통항 지원 및 높이제한 변경을 위한 객관적 교량 높이 자료를 확보하기 위하여 관측데이터를 분석하고 예측모형을 도출하였다. 결과적으로 이번 연구의 결과는 부산항대교의 통항높이 규칙을 60미터에서 63미터로 개정하는데 객관적인 근거자료가 되었다.

Keywords

References

  1. Simonson AE, Riley B. 2015. Measuring Storm Tide and High-water Marks Caused by Hurricane Sandy in New York, In response to Hurricane Sandy, personnel from the U.S. Geological Survey (USGS). pp.7-19.
  2. Behrens R. 2013. Historical Storm Surges on Long Island During Extreme Weather Events. Stony Brook University, Stony Brook, Research Project. p. 44.
  3. Busan port authority. 2007. Design height of Busan HarborBridge[Internet]. [http://www.bukhangbr. com/intro/intro_03.php]. Last accessed 10 October 2016.
  4. Fanelli C, Fanelli P, Wolcott D. 2013. NOAA water level & meteorological data report, Hurricane Sandy. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service Center for Operational Oceanographic Products and Services. p. 62.
  5. Geoscience and Remote Sensing Symposium (IGARSS). 2010. High-rate local sea level monitoring with a GNSS-based tide gauge. 2010 IEEE International ( 25-30 July 2010).
  6. Roberts GW. 2006. GPS measurements on the London Millennium Bridge. Bridge Engineering. 159(4):153-161.
  7. Hani N. 2002. Evaluation of Bridge Scour Monitoring Methods, Journal of Bridge Engineering. 2:112-120.
  8. Casas JR . 2003. Fiber Optic Sensors for Bridge Monitoring, Journal of bridge engineering, 8(6): 21-33.
  9. National Geographic Information Institute. 2007. National reference point(Bench Spot) performance announcement[Internet]. [https://www.ngii.go.kr/kor/board/view.do?rbsIdx=44&key=%EC%88%98%EC%A4%80%EC%A0%90&keyField=search1&page=10&idx=1231]. Last accessed 10 October 2016.
  10. National Geographic Information Institute. 2014. National reference point (integration point) performance announcement[Internet]. [http://map.ngii.go.kr/ms/mesrInfo/gnss/dataDownload.do]. Last accessed 10 October 2016.
  11. U.S. Geological Survey Water-Data Report. 2009. Water Year 2009 [Internet]. [http://wdr.water.usgs. gov/wy2009/pdfs/01303000.2009.pdf]. Last accessed 01 August 2014.