DOI QR코드

DOI QR Code

Updating Land Cover Maps using Object Segmentation and Past Land Cover Information

객체분할과 과거 토지피복 정보를 이용한 토지피복도 갱신

  • Kwak, Geun-Ho (Department of Geoinformatic Engineering, Inha University) ;
  • Park, Soyeon (Department of Geoinformatic Engineering, Inha University) ;
  • Yoo, Hee Young (Geoinformatic Engineering Research Institute, Inha University) ;
  • Park, No-Wook (Department of Geoinformatic Engineering, Inha University)
  • 곽근호 (인하대학교 공간정보공학과) ;
  • 박소연 (인하대학교 공간정보공학과) ;
  • 유희영 (인하대학교 공간정보공학연구소) ;
  • 박노욱 (인하대학교 공간정보공학과)
  • Received : 2017.11.14
  • Accepted : 2017.12.05
  • Published : 2017.12.31

Abstract

This paper presented a method using past land cover maps in image segmentation and training set collection for updating land cover maps. In this method, the object boundaries in past land cover maps were used for segmenting image clearly. Also, the classes of past land cover maps were used to extract additional informative training set from the initial classification result using a small number of initial training set. To evaluate the applicability of proposed method, a case study for updating land cover maps was carried out using middle-level land cover maps and WorldView-2 image in the Taean-gun, South Korea. As a result of the case study, the confusions between urban and barren, paddy/dry field and grassland in the initial classification result were reduced by adding training set. In addition, the object segmentation using boundaries of past land cover map cleared land cover boundaries and improved classification accuracy. Based on the result of case study, the proposed method using past land cover maps is expected to be useful for updating land cover maps.

이 논문에서는 토지피복도 갱신을 목적으로 영상의 객체분할과 훈련 자료 수집에 과거 토지피복도의 정보를 이용하는 방법을 제안하였다. 제안한 방법에서는 영상의 객체분할 시 명확한 토지피복 경계 분할을 위해 과거 토지피복도의 객체 경계를 이용하였다. 또한 적은 수의 초기 훈련 자료를 이용한 초기 분류 결과로부터 유용한 훈련 자료를 추가로 수집하기 위해 과거 토지피복도의 분류 항목 정보를 이용하였다. 충청남도 태안군 일부 지역을 대상으로 환경부 중분류 토지피복도와 WorldView-2 영상을 이용한 토지피복 갱신 사례 연구를 통해 제안된 토지피복도 갱신 방법론의 적용 가능성을 검토하였다. 사례 연구 결과, 초기 분류 결과에서 나타난 시가지와 나지, 논/밭과 초지의 오분류 양상이 제안 방법론을 통해 완화되었다. 또한 과거 토지피복도의 경계를 이용한 객체분할을 통해 객체의 경계를 명확하게 하고 분류 정확도를 향상시켰다. 따라서, 이 연구에서 제안된 방법이 토지피복도 갱신에 유용하게 적용될 수 있을 것으로 기대된다.

Keywords

References

  1. Benz, U.C., P. Hofmann, G. Willhauck, I. Lingenfelder, and M. Heynen, 2004. Multi-resolution, objectoriented fuzzy analysis of remote sensing data for GIS-ready information, ISPRS Journal of Photogrammetry and Remote Sensing, 58(3): 239-258. https://doi.org/10.1016/j.isprsjprs.2003.10.002
  2. Breiman, L., 2001. Random forests, Machine Learning, 45(1): 5-32. https://doi.org/10.1023/A:1010933404324
  3. Byun, Y.G. and Kim, Y.I. 2010. Development and Evaluation of Image Segmentation Technique for Object-based Analysis of High Resolution Satellite Image, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 28(6): 627-636 (in Korean with English Abstract).
  4. Camps-Valls, G., T.V.B. Marsheva, and D. Zhou, 2007. Semi-supervised graph-based hyperspectral image classification, IEEE Transactions on Geoscience and Remote Sensing, 45(10): 3044-3054. https://doi.org/10.1109/TGRS.2007.895416
  5. Chen, Z. and J. Wang, 2010. Land use and land cover change detection using satellite remote sensing techniques in the mountainous Three Gorges Area, China, International Journal of Remote Sensing, 31(6): 1519-1542. https://doi.org/10.1080/01431160903475381
  6. Definiens, A. G., 2009. Definiens eCognition developer 8 user guide, Definens AG, Munchen, Germany.
  7. Defries, R.S. and A.S. Belward, 2000. Global and regional land cover characterization from satellite data: An introduction to the Special Issue, International Journal of Remote Sensing, 21(6-7): 1083-1092. https://doi.org/10.1080/014311600210083
  8. Hong, S.-M., I.-K. Jung, and S.-J. Kim, 2004. Standardizing agriculture-related land cover classification scheme using IKONOS satellite imagery, Korean Journal of Remote Sensing, 20(4): 253-259 (in Korean with English Abstract). https://doi.org/10.7780/kjrs.2004.20.4.253
  9. Johnson, B.A. 2013. High-resolution urban land-cover classification using a competitive multi-scale object-based approach, Remote Sensing Letters, 4(2): 131-140. https://doi.org/10.1080/2150704X.2012.705440
  10. Kim, Y.-J., S.-Y. Cha, and Y.-H. Cho, 2014. A study of landcover classification methods using airborne digital ortho imagery in stream corridor, Korean Journal of Remote Sensing, 30(2): 207-218 (in Korean with English Abstract). https://doi.org/10.7780/kjrs.2014.30.2.4
  11. Lee, M.-J., K.-H. Kim, and J.-H. Park, 2014. National environment atlas development and application base on spatial information environmental, Journal of Environmental Policy, 13(4): 51-78 (in Korean with English Abstract). https://doi.org/10.17330/joep.13.4.201412.51
  12. Lee, S., S.K. Choi, S. Noh, N. Lim, and J. Choi, 2015. Automatic extraction of initial training data using national land cover map and unsupervised classification and updating land cover map, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 33(4): 267-275 (in Korean with English Abstract). https://doi.org/10.7848/ksgpc.2015.33.4.267
  13. Liu, B., X. Yu, P. Zhang, X. Tan, A. Yu, and Z. Xue, 2017. A semi-supervised convolutional neural network for hyperspectral image classification, Remote Sensing Letters, 8(9): 839-848. https://doi.org/10.1080/2150704X.2017.1331053
  14. Ministry of environment, 2017. Environmental Geographic Information Service (EGIS), http://egis.me.go.kr, Accessed on Sep. 1, 2017.
  15. Na, H.-S. and J.-S. Lee, 2014. Analysis of land cover characteristics with object-based classification method - focusing on the DMZ in Inje-gun, Gangwon-do, Journal of the Korean Association of Geographic Information Studies, 17(2): 121-135 (in Korean with English Abstract). https://doi.org/10.11108/kagis.2014.17.2.121
  16. Oh, K.-Y., M.-J. Lee, and W.-Y. No, 2016. A study on the improvement of sub-divided land cover map classification system - based on the land cover map by ministry of environment, Korean Journal of Remote Sensing, 32(2): 105-118 (in Korean with English Abstract). https://doi.org/10.7780/kjrs.2016.32.2.4
  17. Sunwoo, W., D. Kim, S. Kang, and M. Choi, 2016. Application of KOMSAT-2 imageries for change detection of land use and land cover in the west coasts of the Korean peninsula, Korean Journal of Remote Sensing, 32(2): 141-153 (in Korean with English Abstract). https://doi.org/10.7780/kjrs.2016.32.2.7
  18. Yoo, H.Y., N.-W. Park, S. Hong, K. Lee, and Y. Kim, 2015. Classification of multi-temporal SAR data by using data transform based features and multiple classifiers, Korean Journal of Remote Sensing, 31(3): 205-214 (in Korean with English Abstract). https://doi.org/10.7780/kjrs.2015.31.3.1