References
- Baatz, M. and A, Schape, 2000. Multi-resolution segmentation - An optimization approach for high quality multi-scale image segmentation, Angewandte Geographische Informationverarbeitung, 12-23.
- Bernstein, L. S., X. Jin, B. Gregor, and S. M. Adler- Golden, 2012. Quick atmospheric correction code: algorithm description and recent upgrades, Optical engineering, 51(11): 111719-1. https://doi.org/10.1117/1.OE.51.11.111719
- Canny, J., 1986. A computational approach to edge detection, IEEE Transactions on pattern analysis and machine intelligence, (6): 679-698.
- Chen, Q. and Y. Chen, 2016. Multi-feature objectbased change detection using self-adaptive weight change vector analysis, Remote Sensing, 8(7): 549. https://doi.org/10.3390/rs8070549
- Choi, J., 2015. Unsupervised change detection for very high-spatial resolution satellite imagery by using object-based IR-MAD algorithm, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 33(4): 297-304 (in Korean with English abstract). https://doi.org/10.7848/ksgpc.2015.33.4.297
- Jeong, S., 2006. The development of change detection software for public business, Journal of The Korean Society for Geo-Spatial Information System, 14(4): 79-84 (in Korean with English abstract).
- Lee, S. B., Y. Kim, J. Kim, and Y. Park, 2017. Detection of alteration in river area using Landsat satellite imagery, Journal of the Korean Society of Hazard Mitigation, 17(3): 391-398 (in Korean with English abstract). https://doi.org/10.9798/KOSHAM.2017.17.3.391
- Lee, S., S. Choi, S. Noh, N. Lim, and J. Choi, 2015. Automatic extraction of initial training data using national land cover map and unsupervised classification and updating land cover map, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 33(4): 267-275 (in Korean with English abstract). https://doi.org/10.7848/ksgpc.2015.33.4.267
- Liu, S., L. Bruzzone, F. Bovolo, M. Zanetti, and P. Du, 2015. Sequential spectral change vector analysis for iteratively discovering and detecting multiple change in hyperspectral images, IEEE Transactions on Geoscience and Remote Sensing, 53(8): 4363-4378. https://doi.org/10.1109/TGRS.2015.2396686
- Liu, S., Q. Du, X. Tong, A. Samat, L. Bruzzone, and F. Bovolo, 2017. Multiscale morphological compressed change vector analysis for unsupervised multiple change detection, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(9): 4124-4137. https://doi.org/10.1109/JSTARS.2017.2712119
- Malila, W. A. 1980. Change vector analysis: an approach for detecting forest changes with Landsat, LARS symposia, 385.
- Oh, J. H. and C. N. Lee, 2015. Urban change detection between heterogeneous images using the edge information, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 33(4): 259-266 (in Korean with English abstract). https://doi.org/10.7848/ksgpc.2015.33.4.259
- San B. T. and M. L. Suzen, 2010. Evaluation of different atmospheric correction algorithms for EO-1 Hyperion imagery, Proc. of The International Archives of Photogrammetry, Remote Sensing and Spatial Information Science, Kyoto, Japan, Aug. 9-12, vol. XXXVIII, pp. 392-397.
- Varshney, A., M.K. Arora, and J.K. Ghosh, 2012. Median change vector analysis algorithm for land-use land-cover change detection from remote-sensing data, Remote Sensing Letters, 3(7): 605-614. https://doi.org/10.1080/01431161.2011.648281
- Warner, T. A., G. M. Foody, and M. D. Nellis, 2009. The Sage handbook of remote sensing, Sage Publications, CA, USA.
- Yamamoto, H., N. Ryosuke, and T. Satoshi, 2012. Radiometric calibration plan for the hyperspectral imager suite (HISUI) instruments, Proc. of SPIE Asia-Pacific Remote Sensing, Kyoto, Japan, Oct. 29-Nov. 1, vol. 8527.