DOI QR코드

DOI QR Code

Unsupervised Change Detection Based on Sequential Spectral Change Vector Analysis for Updating Land Cover Map

토지피복지도 갱신을 위한 S2CVA 기반 무감독 변화탐지

  • Park, Nyunghee (Department of Civil Engineering, Chungbuk National University) ;
  • Kim, Donghak (Department of Civil Engineering, Chungbuk National University) ;
  • Ahn, Jaeyoon (School of Civil Engineering, Chungbuk National University) ;
  • Choi, Jaewan (Department of Civil Engineering, Chungbuk National University) ;
  • Park, Wanyong (Agency for Defense Development) ;
  • Park, Hyunchun (Agency for Defense Development)
  • Received : 2017.11.09
  • Accepted : 2017.12.05
  • Published : 2017.12.31

Abstract

In this study, we tried to utilize results of the change detection analysis for satellite images as the basis for updating the land cover map. The Sequential Spectral Change Vector Analysis ($S^2CVA$) was applied to multi-temporal multispectral satellite imagery in order to extract changed areas, efficiently. Especially, we minimized the false alarm rate of unsupervised change detection due to the seasonal variation using the direction information in $S^2CVA$. The binary image, which is the result of unsupervised change detection, was integrated with the existing land cover map using the zonal statistics. And then, object-based analysis was performed to determine the changed area. In the experiment using PlanetScope data and the land cover map of the Ministry of Environment, the change areas within the existing land cover map could be detected efficiently.

본 연구에서는 위성영상에 대한 변화탐지 기법의 결과를 토지피복지도 갱신의 기초자료로 활용하고자 하였다. $S^2CVA$(Sequential Spectral Change Vector Analysis) 기법을 다시기 다중분광 위성영상에 적용하여 해당 지역 내의 변화지역을 추출하였다. 특히, 분광변화벡터의 방향정보를 이용하여 계절적 변화에 의한 변화지역의 오탐지를 최소화하고자 하였다. 변화탐지 결과인 이진영상은 구역통계를 활용하여 토지 피복도와 함께 통합하였으며, 토지피복지도 갱신을 위하여 객체 기반의 분석을 수행하였다. PlanetScope 자료와 환경부의 토지피복지도를 이용한 실험결과, 토지피복지도 내에 변화된 지역을 효과적으로 탐지할 수 있음을 확인하였다.

Keywords

References

  1. Baatz, M. and A, Schape, 2000. Multi-resolution segmentation - An optimization approach for high quality multi-scale image segmentation, Angewandte Geographische Informationverarbeitung, 12-23.
  2. Bernstein, L. S., X. Jin, B. Gregor, and S. M. Adler- Golden, 2012. Quick atmospheric correction code: algorithm description and recent upgrades, Optical engineering, 51(11): 111719-1. https://doi.org/10.1117/1.OE.51.11.111719
  3. Canny, J., 1986. A computational approach to edge detection, IEEE Transactions on pattern analysis and machine intelligence, (6): 679-698.
  4. Chen, Q. and Y. Chen, 2016. Multi-feature objectbased change detection using self-adaptive weight change vector analysis, Remote Sensing, 8(7): 549. https://doi.org/10.3390/rs8070549
  5. Choi, J., 2015. Unsupervised change detection for very high-spatial resolution satellite imagery by using object-based IR-MAD algorithm, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 33(4): 297-304 (in Korean with English abstract). https://doi.org/10.7848/ksgpc.2015.33.4.297
  6. Jeong, S., 2006. The development of change detection software for public business, Journal of The Korean Society for Geo-Spatial Information System, 14(4): 79-84 (in Korean with English abstract).
  7. Lee, S. B., Y. Kim, J. Kim, and Y. Park, 2017. Detection of alteration in river area using Landsat satellite imagery, Journal of the Korean Society of Hazard Mitigation, 17(3): 391-398 (in Korean with English abstract). https://doi.org/10.9798/KOSHAM.2017.17.3.391
  8. Lee, S., S. Choi, S. Noh, N. Lim, and J. Choi, 2015. Automatic extraction of initial training data using national land cover map and unsupervised classification and updating land cover map, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 33(4): 267-275 (in Korean with English abstract). https://doi.org/10.7848/ksgpc.2015.33.4.267
  9. Liu, S., L. Bruzzone, F. Bovolo, M. Zanetti, and P. Du, 2015. Sequential spectral change vector analysis for iteratively discovering and detecting multiple change in hyperspectral images, IEEE Transactions on Geoscience and Remote Sensing, 53(8): 4363-4378. https://doi.org/10.1109/TGRS.2015.2396686
  10. Liu, S., Q. Du, X. Tong, A. Samat, L. Bruzzone, and F. Bovolo, 2017. Multiscale morphological compressed change vector analysis for unsupervised multiple change detection, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(9): 4124-4137. https://doi.org/10.1109/JSTARS.2017.2712119
  11. Malila, W. A. 1980. Change vector analysis: an approach for detecting forest changes with Landsat, LARS symposia, 385.
  12. Oh, J. H. and C. N. Lee, 2015. Urban change detection between heterogeneous images using the edge information, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 33(4): 259-266 (in Korean with English abstract). https://doi.org/10.7848/ksgpc.2015.33.4.259
  13. San B. T. and M. L. Suzen, 2010. Evaluation of different atmospheric correction algorithms for EO-1 Hyperion imagery, Proc. of The International Archives of Photogrammetry, Remote Sensing and Spatial Information Science, Kyoto, Japan, Aug. 9-12, vol. XXXVIII, pp. 392-397.
  14. Varshney, A., M.K. Arora, and J.K. Ghosh, 2012. Median change vector analysis algorithm for land-use land-cover change detection from remote-sensing data, Remote Sensing Letters, 3(7): 605-614. https://doi.org/10.1080/01431161.2011.648281
  15. Warner, T. A., G. M. Foody, and M. D. Nellis, 2009. The Sage handbook of remote sensing, Sage Publications, CA, USA.
  16. Yamamoto, H., N. Ryosuke, and T. Satoshi, 2012. Radiometric calibration plan for the hyperspectral imager suite (HISUI) instruments, Proc. of SPIE Asia-Pacific Remote Sensing, Kyoto, Japan, Oct. 29-Nov. 1, vol. 8527.