DOI QR코드

DOI QR Code

Evaluation of Efficacy and Development of Predictive Reduction Models for Escherichia coli and Staphylococcus aureus on Food Contact Surfaces as a Function of Concentration and Contact Time of Chlorine Dioxide

대장균과 황색포도상구균에 대한 이산화염소의 살균소독력 평가 및 살균예측모델 개발

  • Yoon, So-Jeong (Advanced Food Safety Research group, BrainKorea21 Plus, Department of Food Science and Technology) ;
  • Park, Shin Young (Advanced Food Safety Research group, BrainKorea21 Plus, Department of Food Science and Technology) ;
  • Kim, Yong-Soo (Korea Health Industry Development Institute) ;
  • Ha, Sang-Do (Advanced Food Safety Research group, BrainKorea21 Plus, Department of Food Science and Technology)
  • Received : 2017.07.18
  • Accepted : 2017.10.17
  • Published : 2017.12.30

Abstract

There has been increasing concern regarding misuse of disinfectants and sanitizers such as ethanol, sodium hypochlorite, and hydrogen peroxide for food contact surfaces in the food industry. Examining the efficacy of the concentration of currently used disinfectants and sanitizers is urgently required in the Korean society. This study aimed to develop predictive reduction models for Escherichia coli and Staphylococcus aureus in suspension, as a function of $ClO_2$ (chlorine dioxide) and contact time using response surface methodology. E. coli ATCC 10536 and S. aureus ATCC 6538 (initial inoculum, 8-9 log CFU/mL) in tryptic soy broth were treated with different concentrations of $ClO_2$ (5, 20, and 35 ppm) for different contact times (1, 3, and 5 min) following a central composite design. The polynomial reduction models for $ClO_2$ on E. coli and S. aureus were developed under the clean condition. E. coli reduction by 35 ppm $ClO_2$ for 1, 3, and 5 min was 2.49, 2.70, and 3.65 log CFU/mL, respectively. Also, S. aureus reduction by 35 ppm $ClO_2$ for 1, 3, and 5 min was 4.59, 5.25, and 5.81 log CFU/mL, respectively. The predictive response polynomial models developed were $R=0.43231-0.056492^*X_1-0.097771^*X_2+9.24167E-003^*X_1^*X_2+3.06333E-003^*X_1{^2}$ ($R^2=0.98$) on E. coli and $R=1.10542-0.20896^*X_1-0.046062^*X_2+8.30000E-003^*X_1^*X_2+8.73300E-003^*X_1{^2}$ ($R^2=0.99$) on S. aureus, where R was the bacterial reduction (log CFU/mL), $X_1$ was the concentration and $X_2$ was the contact time. Our predictive reduction models should be validated in developing the optimal concentration and contact time of $ClO_2$ for inhibiting E. coli and S. aureus on food contact surfaces.

본 연구는 기구등에 오염된 E. coli와 S. aureus를 제어하기 위해 이산화염소의 농도별 접촉시간에 따른 살균소독력을 평가하여 살균예측모델을 개발하였다. E. coli의 경우 초기균수가 9.13 log CFU/mL이었고, 청정조건에서 5ppm으로 1분, 3분, 5분 처리한 결과 각각 0.04, 0.07, 0.10 log CFU/mL의 감소값을 나타내었다. 20 ppm을 처리한 결과 각각 0.74, 0.79, 0.84 log CFU/mL의 감소값을 나타내었다. 또한 CCD에 의한 최대농도 35 ppm으로 처리한 결과 각각 2.49, 2.70, 3.65 log CFU/mL의 감소값을 나타내었다. S. aureus의 경우 초기균수가 8.70 log CFU/mL이었고, 청정조건에서 5 ppm으로 1분, 3분, 5분 처리한 결과 각각 0.14, 0.28, 0.36 log CFU/mL의 감소값을 나타내었다. 20 ppm을 처리한 결과 각각 0.66, 0.79, 0.90 log CFU/mL의 감소값을 나타내었다. 또한 CCD에 의한 최대농도 35 ppm으로 처리한 결과 각각 4.59, 5.25, 5.81 log CFU/mL의 감소값을 나타내었다. 따라서 이산화염소의 살균소독력 평가결과는 E. coli와 S. aureus에 대하여 식품의약품안전처 살균소독력 기준에 모두 만족하는 것으로 나타났다. 살균예측모델의 경우, $R^2$값이 모두 0.98 이상으로 두 균주에 대해 모두 높은 적합성을 보였다. 본 연구에서 개발된 이산화염소의 살균예측모델을 식품산업 적용을 위한 기초자료로 활용함으로써 E. coli와 S. aureus를 적절한 농도와 접촉시간으로 제어할 수 있을 것으로 사료된다.

Keywords

References

  1. Fuster-Valls, N., Hernandez-Herrero. M., Marin-de-Mateo, M., and Rodriguez-Jerez, J.J.: Effect of different environmental conditions on the bacteria survival on stainless steel surfaces. Food Control, 19, 308-314 (2008). https://doi.org/10.1016/j.foodcont.2007.04.013
  2. Kim, H.I., Jeon, D.H., Yoon, H.J., Choi, H.C., Eom, M.O., Sung, J.H., Park, N.Y., Won, S.A., Kim, N.Y., and Lee, Y.J.: Evaluation of the efficacy of sanitizers on food contact surfaces using a surface test method. J. Food Hyg. Saf., 23, 291- 296 (2008).
  3. Kusumaningrum, H.D., Riboldi, G., Hazeleger, W.C., and Beumer, R.R.: Survival of foodborne pathogens on stainless steel surfaces and cross-contamination to foods. Int. J. Food Microbiol., 85, 227-236 (2003). https://doi.org/10.1016/S0168-1605(02)00540-8
  4. Lee, Y. S., Ha, S. D., Kim, D. H., and Park, J. H.: Evaluation of efficacy and development of predictive model of sanitizers and disinfectants on reduction of microorganisms on food contact surfaces. J. Food Hyg. Saf., 26, 203-208 (2011).
  5. KFDA (Korea Food and Drug Administration). Standards and specification of food contact surface sanitizing solutions (2016).
  6. Kim, J. M.: Use of chlorine dioxide as a biocide in the food industry. Food Ind. Nutr., 6, 33-39 (2001).
  7. Kim, Y. S., Park, I. S., and Ha, S. D.: Application sanitizer for the control of microorganisms in food. Food Science and Industry, 42, 26-51 (2009).
  8. Lykins Jr, B. W., and Griese, M. H.: Using chlorine dioxide for trihalomethane control. J. Am. Water Works Assoc., 78, 88- 93 (1986). https://doi.org/10.1002/j.1551-8833.1986.tb05769.x
  9. KFDA (Korea Food and Drug Administration). Korea Food Additives Code, V. General test methods, 37. Test method of bactericidal activity.
  10. KFDA (Korea Food and Drug Administration). Available from: http://www.mfds.go.kr Accessed May 8, 2017.
  11. Huang, J., Wang, L., Ren, N., and Ma, F.: Disinfection effect of chlorine dioxide on bacteria in water. Water Res., 31, 607- 613 (1997). https://doi.org/10.1016/S0043-1354(96)00275-8
  12. Foschino, R., Nervegna, I., Motta, A., and Galli, A.: Bactericidal activity of chlorine dioxide against Escherichia coli in water and on hard surfaces. J. Food Prot., 61, 668-672 (1998). https://doi.org/10.4315/0362-028X-61.6.668
  13. Ryu, S. H.: Effects of aqueous chlorine dioxide against Escherichia coli O157: H7 and Listeria monocytogenes on broccoli served in foodservice institutions. J. Korean Soc. Food Sci. Nutr., 36, 1622-1627 (2007). https://doi.org/10.3746/jkfn.2007.36.12.1622
  14. Youm, H. J., Ko, J. K., Kim, M. R., and Song, K. B.: Inhibitory effect of aqueous chlorine dioxide on survival of Escherichia coli O157: H7, Salmonella typhimurium, and Listeria monocytogenes in pure cell culture. Korean J. Food Sci. Technol., 36, 514-517 (2004).
  15. Olmez, H., and Kretzschmar, U.: Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. LWTFood Science and Technology, 42, 686-693 (2009).
  16. Kim, H.I., Lee, K.H., Kwak, I.S., Eom, M.O., Jeon, D.H., Sung, J.H., Choi, J.M., Kang, H.S., Kim, Y.S., and Kang, K.J.: The establishing test method of bactericidal activity and the evaluating of Korean disinfectants/sanitizers efficacy. Korean J. Food Sci. Technol., 37, 838-843 (2005).