DOI QR코드

DOI QR Code

Comparison of Anti-oxidative Activity in a Single Serving Size of the Commercial Coffees and Teas

  • Kim, Tae-Hun (Food Analysis Division, Daejeon Metropolitan City Institute of Health and Environment) ;
  • Lee, Seulgi (Department of Biochemistry, Chungnam National University) ;
  • Seo, Jin Woo (Food Analysis Division, Daejeon Metropolitan City Institute of Health and Environment) ;
  • Bing, Sun Hye (Food Analysis Division, Daejeon Metropolitan City Institute of Health and Environment) ;
  • Kim, Jong Im (Food Analysis Division, Daejeon Metropolitan City Institute of Health and Environment) ;
  • Kwon, Eui-Ra (Food Analysis Division, Daejeon Metropolitan City Institute of Health and Environment) ;
  • Jo, Gune-Hee (Food Analysis Division, Daejeon Metropolitan City Institute of Health and Environment) ;
  • Lee, Jae-Myean (Food Analysis Division, Daejeon Metropolitan City Institute of Health and Environment) ;
  • Choi, Joon Sig (Department of Biochemistry, Chungnam National University)
  • Received : 2017.08.29
  • Accepted : 2017.10.13
  • Published : 2017.12.30

Abstract

The aim of this work was to study the comparison of anti-oxidative activity in a single serving size of commercial coffees and teas. Commercial regular coffees and teas, including, brand regular coffees ($BC_A$, $BC_B$, $BC_C$, $BC_D$, and $BC_E$), green tea ($GT_A$, $GT_B$, $GT_C$, and $GT_D$), black tea ($BT_A$, $BT_B$, and $BT_C$), pu-erh tea ($PT_A$, $PT_B$, and $PT_C$), chamomile tea ($CT_A$, $CT_B$, and $CT_C$), peppermint tea ($P_A$, $P_B$, and $P_C$), polygonatum odoratum tea ($POT_A$, $POT_B$, and $POT_C$), and jujube tea ($JT_A$, $JT_B$, and $JT_C$) were assayed for the levels of ascorbic acid, caffeine, total content of polyphenols and flavonoids, and ability to scavenge free radicals, using two in vitro antioxidant assays. The scavenging abilities of $BC_A$ and $BC_C$ were $664.91{\pm}48.87mg$ ascorbic acid equivalent/serving size and $624.36{\pm}16.18mg$ ascorbic acid equivalent/serving size, respectively. The four beverage samples ($BC_A$, $BC_C$, $GT_D$, and $BT_A$) significantly reduced the production of reactive oxygen species (ROS) and intracellular oxidative stress induced by $H_2O_2$. These results suggest that the beverages possess significant radical scavenging ability, which may be due to the presence of antioxidants. Furthermore, the significant reducing level of ROS evidences the potential antioxidant effects of these beverages in human cells.

커피와 다류에 대한 소비는 전 세계적으로 해마다 증가하는 추세이며, 한국을 포함하여 아시아권에도 물 다음으로 가장 많은 소비가 이루어지는 음료는 커피와 차(녹차, 케모마일차, 페퍼민트차, 둥글레차, 보이차, 홍차, 대추차)이다. 본 연구는 국내에서 시판되는 커피전문점의 브랜드 커피 5종과 침출차 20종(녹차 4종, 홍차 3종, 보이차 3종, 케모마일차 3종, 페퍼민트차 3종, 둥글레차 3종, 대추차 1종), 고형차 2종(대추차 2종)에 대하여 각 음료 1잔에 함유되어 있는 비타민C, 카페인, 총폴리페놀, 플라보노이드를 분석하였고, 이들의 항산화활성을 측정하여 서로의 상관관계를 살펴보았다. 추가적으로 항산화활성이 높은 커피와 다류 총 4종을 대상으로 과산화수소($H_2O_2$)로 유도된 산화적 스트레스로부터 세포 보호효과를 평가하여 시판 커피와 다류의 항산화 연구를 위한 기초자료를 확보하고자 하였다. 녹차와 홍차 각각 1잔당 비타민 C 함량은 0.04~1.58 mg 이었고 커피와 나머지 차는 비타민 C가 검출되지 않았다. 카페인 함량은 브랜드 커피가 1잔당 150.17~202.75 mg으로 다른 종류의 음료보다 높았다. 음료에 함유된 총 폴리페놀 함량은 gallic acid의 등량값(GAE)으로 표시할 때 브랜드 커피 A($BC_A$)가 265.54 mg / serving size으로 가장 높았고, 플라보노이드 함량은 quercetin 등량값(QE)으로 브랜드 커피 B($BC_B$)가 12.14 mg / serving size으로 가장 높았다. 음료 4종(브랜드 커피 A, C 그리고 녹차 D, 홍차 A) 시료의 농도가 높아질수록 HeLa 세포 내활성산소종(reactive oxygen species, ROS) 생성 억제효과 및 $H_2O_2$의 소거활성이 증가하였다. 본 연구결과 브랜드 커피 및 홍차, 녹차는 각각 1잔당 비타민 C의 등량값으로 590, 330, 300 mg의 항산화능을 가지며, HeLa 세포 내에서도 활성산소 감소효과가 확인되는 우수한 항산화 음료로 평가되었다.

Keywords

References

  1. Zorov, D.B., Juhaszova, M., and Sollott, S.J.: Mitochondrial ROS-induced ROS release: an update and review. Biochim. Biophys. Acta., 1757, 509-517 (2006). https://doi.org/10.1016/j.bbabio.2006.04.029
  2. Rahman, K.: Studies on free radicals, antioxidants, and cofactors. Clin. Interv. Aging., 2, 219-236 (2007).
  3. Mates, J.M., Perez-Gomez, C., and Nunez de Castro, I.: Antioxidant enzymes and human diseases. Clin. Biochem., 32, 595-603 (1999). https://doi.org/10.1016/S0009-9120(99)00075-2
  4. Kovacic, P., and Jacintho, J.D.: Mechanisms of carcinogenesis: focus on oxidative stress and electron transfer. Curr. Med. Chem., 8, 773-796 (2001). https://doi.org/10.2174/0929867013373084
  5. Lee, J., Koo, N., and Min, D.: Reactive oxygen species, aging, and antioxidative nutraceuticals. Compr. Rev. Food. Sci. Food. Saf., 3, 21-33 (2004). https://doi.org/10.1111/j.1541-4337.2004.tb00058.x
  6. Vinod, B.S., Maliekal, T.T., and Anto, R.J.: Phytochemicals as chemosensitizers: from molecular mechanism to clinical significance. Antioxid. Redox. Signal., 18, 1307-1348 (2013). https://doi.org/10.1089/ars.2012.4573
  7. Niki, E.: Action of ascorbic acid as a scavenger of active and stable oxygen radicals. Am. J. Clin. Nutr., 54, 1119S-1124S (1991). https://doi.org/10.1093/ajcn/54.6.1119s
  8. Devasagayam, T., Kamat, J., Mohan, H., and Kesavan, P.: Caffeine as an antioxidant: inhibition of lipid peroxidation induced by reactive oxygen species. Biochim. Biophys. Acta., 1282, 63-70 (1996). https://doi.org/10.1016/0005-2736(96)00040-5
  9. Bravo, L.: Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev., 56, 317-333 (1998).
  10. Scalbert, A., Johnson, I.T., and Saltmarsh, M.: Polyphenols: antioxidants and beyond. Am. J. Clin. Nutr., 81, 215S-217S (2005). https://doi.org/10.1093/ajcn/81.1.215S
  11. Dai, Q., Borenstein, A.R., Wu, Y., Jackson, J.C., and Larson, E.B.: Fruit and vegetable juices and Alzheimer's disease: the Kame Project. Am. J. Med., 119, 751-759 (2006). https://doi.org/10.1016/j.amjmed.2006.03.045
  12. Rietveld, A., and Wiseman, S.: Antioxidant effects of tea: evidence from human clinical trials. J. Nutr., 133, 3285S- 3292S (2003). https://doi.org/10.1093/jn/133.10.3285S
  13. Kim, T.H, Chae, S.J., Kim, C.W.: A study on the coffee consumption behavior by lifestyle. KJHT., 22, 93-112 (2013).
  14. Kim, Y.A, Ko, J.Y.: Comparison analysis consensus map of coffee and tea customers using ZMET. KJHT., 24, 99-114 (2015).
  15. Ludwig, I.A., Sanchez, L., Caemmerer, B., Kroh, L.W., De Pena, M.P., and Cid, C.: Extraction of coffee antioxidants: impact of brewing time and method. Food Res. Int., 48, 57- 64 (2012). https://doi.org/10.1016/j.foodres.2012.02.023
  16. Singleton, V.L., Rossi, J.A.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult., 16, 144-158 (1965).
  17. Chang, C.C., Yang, M.H., Wen, H.M., and Chern, J.C.: Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal., 10, 178- 182 (2002).
  18. Gyamfi, M.A., Yonamine, M., and Aniya, Y.: Free-radical scavenging action of medicinal herbs from Ghana: Thonningia sanguinea on experimentally-induced liver injuries. Gen. Pharmacol., 32, 661-667 (1999). https://doi.org/10.1016/S0306-3623(98)00238-9
  19. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C.: Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26, 1231-1237 (1999). https://doi.org/10.1016/S0891-5849(98)00315-3
  20. Wang, H., and Joseph, J. A.: Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free. Radic. Biol. Med., 27, 612-616 (1999). https://doi.org/10.1016/S0891-5849(99)00107-0
  21. Debry, G.: Coffee and health. John Libbey, Paris, France, pp. 157-249 (1994).
  22. Jeszka-Skowron, M., Sentkowska, A., Pyrzy ska, K., and De Pena, M.P.: Chlorogenic acids, caffeine content and antioxidant properties of green coffee extracts: influence of green coffee bean preparation. Eur. Food Res. Technol., 242, 1403- 1409 (2016). https://doi.org/10.1007/s00217-016-2643-y
  23. Boros, K., Jedlinszki, N., and Csupor, D.: Theanine and caffeine content of infusions prepared from commercial tea samples. Pharmacogn. Mag., 12, 75-79 (2016). https://doi.org/10.4103/0973-1296.176061
  24. Pellegrini, N., Serafini, M., Salvatore, S., Del Rio, D., Bianchi, M., and Brighenti, F.: Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays. Mol. Nutr. Food Res., 50, 1030-1038 (2006). https://doi.org/10.1002/mnfr.200600067