References
- C. Hu, T. Lu, and F. Chen, A brief review of graphene-metal oxide composites synthesis and applications in photocatalysis, J. Chin. Adv. Mater. Soc., 1, 21-39 (2013). https://doi.org/10.1080/22243682.2013.771917
-
L. Zhu, Z. D. Meng, M. L. Chen, F. J. Zhang, J. G. Choi, J. Y. Park, and W. C. Oh, Photodegradation of MB solution by the metal (Fe, Ni and Co) containing AC/
$TiO_2$ photocatalyst under the UV irradiation, J. Photo. Sci., 1, 69 (2010). - H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, P25-graphene composite as a high performance photocatalyst, ACS Nano, 4, 380-386 (2010). https://doi.org/10.1021/nn901221k
- S. R. Kim, M. K. Parvez, and M. Chhowalla, UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells, Chem. Phys. Lett., 483, 124-127 (2009). https://doi.org/10.1016/j.cplett.2009.10.066
-
W. Low and V. Boonamnuayvitaya, Enhancing the photocatalytic activity of
$TiO_2$ co-doping of graphene-$Fe^{3+}$ ions for formaldehyde removal, J. Environ. Manage., 127, 142-149 (2013). https://doi.org/10.1016/j.jenvman.2013.04.029 -
H.-I. Kim, G.-H. Moon, D. Monllor-Satoca, Y. Park, and W. Choi, Solar photoconversion using graphene/
$TiO_2$ composites: Nanographene shell on$TiO_2$ core versus$TiO_2$ nanoparticles on graphene sheet, J. Phys. Chem. C, 116(1), 1535-1543 (2012). https://doi.org/10.1021/jp209035e -
D. Zhao, G. Sheng, C. Chen, and X. Wang, Enhanced photocatalytic degradation of methylene blue under visible irradiation on
$graphene@TiO_2$ dyade structure, Appl. Catal. B, 111-112, 303-308 (2012). https://doi.org/10.1016/j.apcatb.2011.10.012 -
L. Karimi, M. E. Yazdanshenas, R. Khajavi, A. Rashidi, and M. Mirjalili, Using
$graphene/TiO_2$ nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity, Cellulose, 21, 3813-3827 (2014). https://doi.org/10.1007/s10570-014-0385-1 - C. Chung, Y.-K. Kim, D. Shin, S.-R. Ryoo, B.-H. Hong, and D.-H. Min, Biomedical applications of graphene and graphene oxide, Acc. Chem. Res., 46(10), 2211-2224 (2013). https://doi.org/10.1021/ar300159f
-
Y. Kikuchia, K. Sunadaa, T. Iyodaa, K. Hashimoto, and A. Fujishimaa, Photocatalytic bactericidal effect of
$TiO_2$ thin films: dynamic view of the active oxygen species responsible for the effect, J. Photochem. Photobiol. A, 106, 51-56 (1997). https://doi.org/10.1016/S1010-6030(97)00038-5 -
Z. Zhang, W. Wang, M. Shang, and W. Yin, Low-temperature combustion synthesis of
$Bi_2WO_6$ nanoparticles as a visible-lightdriven photocatalyst, J. Hazard. Mater., 177, 1013-1018 (2010). https://doi.org/10.1016/j.jhazmat.2010.01.020 -
J. Ren, W. Wang, L. Zhang, J. Chang, and S. P. Hu, Photocatalytic inactivation of bacteria by photocatalyst
$Bi_2WO_6$ under visible light, Catal. Commun., 10, 1940-1943 (2009). https://doi.org/10.1016/j.catcom.2009.07.006 -
Z. Cui, D. Zeng, T. Tang, J. Liu, and C. Xie, Enhanced visible light photocatalytic activity of QDS modified
$Bi_2WO_6$ nanostructures, Catal. Commun., 11, 1054-1057 (2010). https://doi.org/10.1016/j.catcom.2010.05.010 -
J. Ren, W. Wang, S. Sun, L. Zhang, and J. Chang, Enhanced photocatalytic activity of
$Bi_2WO_6$ loaded with Ag nanoparticles under visible light irradiation, Appl. Catal. B, 92, 50-55 (2009). https://doi.org/10.1016/j.apcatb.2009.07.022 -
Y. Zhang, Y. Zhang, L. Fei, X. Jiang, C. Pan, and Y. Wang, Engineering nanostructured
$Bi_2WO_6$ -$TiO_2$ toward effective utilization of natural light in photocatalysis, J. Am. Chem. Soc., 94, 4157-4161 (2011). -
Q. C. Xu, D. V. Wellia, Y. H. Ng, R. Amal, and T. T. Y. Tan, Synthesis of porous and visible-light absorbing
$Bi_2WO_6$ /$TiO_2$ heterojunction films with improved photoelectrochemical and photocatalytic performances, J. Phys. Chem. C, 115(15), 7419-7428 (2011). https://doi.org/10.1021/jp1090137 -
F. Zhou and Y. Zhu, Significant photocatalytic enhancement in methylene blue degradation of
$Bi_2WO_6$ photocatalysts via graphene hybridization, J. Adv. Ceram., 1(1), 72-78 (2012). https://doi.org/10.1007/s40145-012-0008-y -
H. Fu, L. Zhang, W. Yao, and Y. Zhu, Photocatalytic properties of nanosized
$Bi_2WO_6$ catalysts synthesized via a hydrothermal process, Appl. Catal. B, 66, 100-110 (2006). https://doi.org/10.1016/j.apcatb.2006.02.022 -
Y. Zhang, L. Fei, X. Jiang, C. Pan, and Y. Wang, Engineering nanostructured
$Bi_2WO_6$ -$TiO_2$ toward effective utilization of natural light in photocatalysis, J. Am. Ceram. Soc., 94, 4157-4161 (2011). https://doi.org/10.1111/j.1551-2916.2011.04905.x -
Y.-L. Min, K. Zhang, Y.-C. Chen, and Y.-G. Zhang, Enhanced photocatalytic performance of
$Bi_2WO_6$ by graphene supporter as charge transfer channel, Sep. Purif. Technol., 86, 98-105 (2012). https://doi.org/10.1016/j.seppur.2011.10.025 -
Z. Sun, J. Guo, S. Zhu, L. Mao, J. Ma, and D. Zhang, A high-performance
$Bi_2WO_6$ -graphene photocatalyst for the visible light-induced$H_2$ and$O_2$ generation, Nanoscale, 6, 2186-2193 (2014). https://doi.org/10.1039/C3NR05249D -
C. G. Silva and J. L. Faria, Photocatalytic oxidation of benzen derivatives in aqueous suspensions: synergic effect induced by the introduction of carbon nanotubes in a
$TiO_2$ matrix, Appl. Catal. B, 101, 81-89 (2010). https://doi.org/10.1016/j.apcatb.2010.09.010 -
D. C. T. Nguyen, K. Y. Cho, and W. C. Oh, Synthesis of frost-like CuO combined graphene-
$TiO_2$ by self-assembly method and its high photocatalytic performance, Appl. Surf. Sci., 412, 252-261 (2017). https://doi.org/10.1016/j.apsusc.2017.03.248 -
J. Yang, X. Wang, X. Zhao, J. Dai, and S. Mo, Synthesis of uniform
$Bi_2WO_6$ -reduced graphene oxide nanocomposites with significantly enhanced photocatalytic reduction activity, J. Phys. Chem., 119(6), 3068-3078 (2015). -
Y. Li, X. Li, and J. Li, Photocatalytic degradation of methyl orange by
$TiO_2$ -coated activated carbon and kinetic study, Water Res., 40, 1119-1126 (2006). https://doi.org/10.1016/j.watres.2005.12.042 -
E. Gao, W. Wang, M. Shang, and J. Xu, Synthesis and enhanced photocatalytic performance of graphene-
$Bi_2WO_6$ composite, Phys. Chem. Chem. Phys., 13, 2887-2893 (2011). https://doi.org/10.1039/C0CP01749C - F. Dong, Z. Y. Wang, Y. J. Sun, W. K. Ho, and H. D. Zhang, Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity, J. Colloid Interface Sci., 401, 70-79 (2013). https://doi.org/10.1016/j.jcis.2013.03.034
- T. D. Nguyen-Phan, V. H. Pham, E. W. Shin, H. D. Pham, S. Kim, J. S. Chung, and S. H. Hur, The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/ graphene oxide composites, Chem. Eng. J., 170, 226-232 (2011). https://doi.org/10.1016/j.cej.2011.03.060
-
D. C. T. Nguyen, K. Y. Cho, and W. C. Oh, Synthesis of mesoporous
$SiO_2$ /$Cu_2O$ -graphene nanocomposites and their highly efficien photocatalytic performance for dye pollutants. RSC Adv., 7, 29284-29294 (2017). https://doi.org/10.1039/C7RA03526H -
S. Min and G. Lu, Sites for High efficient photocatalytic hydrogen evolution on a limited-layered
$MoS_2$ cocatalyst confined on graphene sheets-The role of graphene, J. Phys. Chem. C, 116(48), 25415-25424 (2012). https://doi.org/10.1021/jp3093786 -
J. P. Zou, J. Ma, J. M. Luo, J. Yu, J. He, Y. Meng, and X. B. Luo, Fabrication of novel heterostructured few layered WS2-
$Bi_2WO_6$ /$Bi_{3.84}W_{0.16}O_{6.24}$ composites with enhanced photocatalytic performance, Appl. Catal. B, 179, 220-228 (2015). https://doi.org/10.1016/j.apcatb.2015.05.031 -
G. Colon, S. Murcia Lopez, M. C. Hidalgoa, and J. A. Nvioa, Sunlight highly photoactive
$Bi_2WO_6$ -$TiO_2$ heterostructures for rhodamine B degradation, Chem. Commun., 46, 4809-4811 (2016). -
D. C. T. Nguyen, K. Y. Cho, and W. C. Oh, A facile route to synthesize ternary
$Cu_2O$ quantum dot/graphene-$TiO_2$ nanocomposites with an improved photocatalytic effect, Fullerenes, Nanotubes and Carbon Nanostructures DOI: 10.1080/1536383X.2017.1344648 (2017).
Cited by
- Synthesis and Characterization of a Ternary Nanocomposite Based on CdSe Decorated Graphene-TiO2 and its Application in the Quantitative Analysis of Alcohol with Reduction of CO2 vol.55, pp.4, 2017, https://doi.org/10.4191/kcers.2018.55.4.03
- Highly efficient visible light driven photocatalytic activities of the LaCuS2-graphene composite-decorated ordered mesoporous silica vol.205, pp.None, 2017, https://doi.org/10.1016/j.seppur.2018.05.019
- Solar-Powered Supercapacitors Integrated with a Shared Electrode vol.4, pp.12, 2021, https://doi.org/10.1021/acsaem.1c02813
- Use of modified PEDOT:PSS/Graphene oxide dispersions as a hole transport layer for inverted bulk-heterojunction organic solar cells vol.100, pp.None, 2022, https://doi.org/10.1016/j.orgel.2021.106388