References
- W. F. Hu, W. Lo, H. Chua, S. N. Sin, and P. H. F. Yu, Nutrient release and sediment oxygen demand in a eutrophic land-locked embayment in Hong Kong, Environ. Int., 26, 369-375 (2001). https://doi.org/10.1016/S0160-4120(01)00014-9
- D. J. Randall and T. K. N. Tsui, Ammonia toxicity in fish, Mar. Pollut. Bull., 45, 17-23 (2002). https://doi.org/10.1016/S0025-326X(02)00227-8
- J. O. Clemmesen, F. S. Larsen, J. Kondrup, B. A. Hansen, and P. Ott, Cerebral herniation in patients with acute E liver failure is correlated with arterial ammonia concentration, Hepatology, 29, 648-653 (1999). https://doi.org/10.1002/hep.510290309
- W. T. Mook, M. H. Chakrabarti, M. K. Aroua, G. M. A. Khan, B. S. Ali, M. S. Islam, and M. A. A. Hassan, Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review, Desalination, 285, 1-13 (2012). https://doi.org/10.1016/j.desal.2011.09.029
- S. K. Marttinen, R. H. Kettunen, K. M. Sormunen, R. M. Soimasuo, and J. A. Rintala, Screening of physical-chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates, Chemosphere., 46, 851-858 (2002). https://doi.org/10.1016/S0045-6535(01)00150-3
- T. C. Jorgensen and L. R. Weatherley, Ammonia removal from wastewater by ion exchange in the presence of organic contaminants, Water Res., 37, 1723-1728 (2003). https://doi.org/10.1016/S0043-1354(02)00571-7
- G. B. Nuernberg, M. A. Moreira, P. R. Ernani, J. A. Almeida, and T. M. Maciel, Efficiency of basalt zeolite and Cuban zeolite to adsorb ammonia released from poultry litter, J. Environ. Manage., 183, 667-672 (2016). https://doi.org/10.1016/j.jenvman.2016.08.062
- Y. Ding and M. Sartaj, Statistical analysis and optimization of ammonia removal from aqueous solution by zeolite using factorial design and response surface methodology, J. Environ. Chem. Eng., 3, 807-814 (2015). https://doi.org/10.1016/j.jece.2015.03.025
- S. Wang, Y. Peng, B. Ma, S. Wang, and G. Zhu, Anaerobic ammonium oxidation in traditional municipal wastewater treatment plants with low-strength ammonium loading: Widespread but overlooked, Water Res., 84, 66-75 (2015). https://doi.org/10.1016/j.watres.2015.07.005
- Y. Ma, D. Hira, Z. Li, C. Chen, and K. Furukawa, Nitrogen removal performance of a hybrid anammox reactor, Bioresour. Technol., 102, 6650-6656 (2011). https://doi.org/10.1016/j.biortech.2011.03.081
- L. Zhang, W. Wu, and J. Wang, Immobilization of activated sludge using improved polyvinyl alcohol (PVA) gel, J. Environ. Sci., 19, 1293-1297 (2007). https://doi.org/10.1016/S1001-0742(07)60211-3
- W. Martens-Habbena, P. M. Berube, H. Urakawa, J. R. de la Torre, and D. A. Stahl, Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria, Nature, 461, 976-979 (2009). https://doi.org/10.1038/nature08465
- R. Hatzenpichler, Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea, Appl. Environ. Microbiol., 78, 7501-7510 (2012). https://doi.org/10.1128/AEM.01960-12
- C. Wuchter, B Abbas, M. J. L. Coolen, L Herfort, J. van Bleijswijk, P. Timmers, M. Strous, E. Teira, G. J. Herndl, J. J. Middelburg, S. Schouten, and J. S. S. Damste, Archaeal nitrification in the ocean, Proc. Natl. Acad. Sci. U.S.A., 103, 12317-12322 (2006). https://doi.org/10.1073/pnas.0600756103
- S. Leininger, T. Urich, M. Schloter, L. Schwar, J. Qi, G. W. Nicol, J. I. Prosser, S. C. Schuster, and C. Schleper, Archaea predominate among ammonia-oxidizing prokaryotes in soils, Nature, 442, 806-809 (2006). https://doi.org/10.1038/nature04983
- J. Ollivier, N. Wanat, A. Austruy, A. Hitmi, E. Joussein, G. Welzi, J. C. Munch, and M. Schloter, Abundance and diversity of ammonia- oxidizing prokaryotes in the root-rhizosphere complex of Miscanthus x giganteus grown in heavy metal-contaminated soils, Microb. Ecol., 64, 1038-1046 (2012). https://doi.org/10.1007/s00248-012-0078-y
- C. R. Murthy and L. Hertz, Acute effect of ammonia on branched-chain amino acid oxidation and incorporation into proteins in astrocytes and in neurons in primary cultures, J. Neurochem., 49, 735-741 (1987). https://doi.org/10.1111/j.1471-4159.1987.tb00955.x
- L. K. Bak, A. Schousboe, and H. S. Waagepetersen, The glutamate/ GABA-glutamine cycle: Aspects of transport, neurotransmitter homeostasis and ammonia transfer, J. Neurochem., 98, 641-653 (2006). https://doi.org/10.1111/j.1471-4159.2006.03913.x
- H. G. Preuss, Ammonia production from glutamine and glutamate in isolated dog renal tubules, Am. J. Physiol., 220, 54-58 (1971).
- Y. J. Kim, M. Yoshizawa, S. Takenaka, S. Murakami, and K. Aoki, Ammonia assimilation in Klebsiella pneumoniae F-5-2 that can utilize ammonium and nitrate ions simultaneously: purification and characterization of glutamate dehydrogenase and glutamine synthetase, J. Biosci. Bioeng., 93, 584-588 (2002). https://doi.org/10.1016/S1389-1723(02)80241-9
- B. Zhao, Y. L. He, J. Hughes, and X. F. Zhang, Heterotrophic nitrogen removal by a newly isolated Acinetobacter calcoaceticus HNR, Bioresour. Technol., 101, 5194-5200 (2010). https://doi.org/10.1016/j.biortech.2010.02.043
- M. G. Fernandez-Lopez, C. Popoca-Ursino, E. Sanchez-Salinas, R. Tinoco-Valencia, J. L. Folch-Mallol, E. Dantan-Gonzalez, and M. Laura Ortiz-Hemandez, Enhancing methyl parathion degradation by the immobilization of Burkholderia sp. isolated from agricultural soils, Microbiologyopen, 6, 1-12 (2017).
- Y. Ding and M. Sartaj, Statistical analysis and optimization of ammonia removal from aqueous solution by zeolite using factorial design and response surface methodology, J. Environ. Chem. Eng., 3, 807-814 (2015). https://doi.org/10.1016/j.jece.2015.03.025
- W. C. van Heeswijk, H. V. Westerhoff, and F. C. Boogerd, Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective, Microbiol. Mol. Biol. Rev., 77, 628-695 (2013). https://doi.org/10.1128/MMBR.00025-13
- L. Reitzer, Nitrogen assimilation and global regulation in Escherichia coli, Annu. Rev. Microbiol., 57, 155-176 (2003). https://doi.org/10.1146/annurev.micro.57.030502.090820
- T. E. Shehata and A. G. Marr, Effect of nutrient concentration on the growth of Escherichia coli, J. Bacteriol., 107, 210-216 (1971).
- U. Lendenmann, M. Snozzi, and T. Egli, Growth kinetics of Escherichia coli with galactose and several other sugars in carbon- limited chemostat culture, Can. J. Microbiol., 46, 72-80 (2000). https://doi.org/10.1139/cjm-46-1-72
- M. Becker, L. De Cola, and A. Studer, Site-specific immobilization of proteins at zeolite L crystals by nitroxide exchange reactions, Chem. Commun. (Camb.), 47, 3392-3394 (2011). https://doi.org/10.1039/c0cc05474g
- Y. Watanabe, T. Ikoma, H. Yamada, Y. Suetsugu, Y Komatsu, G. W. Stevens, Y. Moriyoshi, and J. Tanaka, Novel long-term immobilization method for radioactive iodine-129 using a zeolite/apatite composite sintered body, ACS Appl. Mater. Interfaces, 1, 1579-1584 (2009). https://doi.org/10.1021/am900251m