DOI QR코드

DOI QR Code

양극산화를 이용한 산화 타이타늄 나노 튜브 구조 형성 원리

Principle of Anodic TiO2 Nanotube Formations

  • 이기영 (경북대학교 나노소재공학부)
  • Lee, Kiyoung (School of Nano & Materials Science and Engineering, Kyungpook National University)
  • 투고 : 2017.01.24
  • 심사 : 2017.02.20
  • 발행 : 2017.12.10

초록

금속 표면처리의 대표적인 기술인 양극산화를 통하여 일차원 나노구조 금속 산화물을 형성할 수 있다. 여러 가지 금속 산화물 중에 기능성이 뛰어난 $TiO_2$에 대한 관심의 증대로 $TiO_2$ 나노 튜브를 이용한 연구가 많이 이루어지고 있다. 본 총설논문에서는 지금까지 연구되어 밝혀진 $TiO_2$ 나노 튜브가 형성원리에 대한 해설논문으로 전기화학적 측면에서의 양극 산화 공정에 대한 이해를 통하여 나노 튜브 형성을 위한 전기적 조건, 화학적 조건, 물리적 조건에 대하여 다루었다. 특히 $TiO_2$ 나노 튜브 성장의 핵심 요소인 산화물의 형성과 에칭의 평형관계, 다공성 구조의 형성 원인을 다루었다. 나아가 전해질 조건에 따른 $TiO_2$ 나노 튜브의 형태학적 고찰을 함으로써 향후 양극 산화를 통한 $TiO_2$ 나노 튜브 응용에 관한 연구를 하는 연구자에게 이해하기 쉽게 설명하고자 하였다.

One-dimensional nanostructured metal oxide can be formed through an anodic oxidation, which is a typical technique of metal surface treatment. Studies on $TiO_2$ nanotubes have been widely carried out with increasing interests in $TiO_2$, which has an excellent functionality among various metal oxides. The present article reviews the principles of formation of $TiO_2$ nanotubes, which have been studied so far. In particular, the article discussed the equilibrium relationship between the oxide formation and etching, which is a key parameter of $TiO_2$ nanotube growth, and the formation of the porous structure. Furthermore, morphological considerations of $TiO_2$ nanotubes according to electrolyte conditions will be explained to the researchers who will study the application of $TiO_2$ nanotubes formed through the anodic oxidation in the future.

키워드

참고문헌

  1. S. Kim, J. Lim, and J. Choi, Preparation of polymer nonotubes/ nanowires by using inorganic porous templates, Polym. Sci. Technol., 17, 742 (2006).
  2. H. Masuda and K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumi-na, Science, 268, 1466 (1995). https://doi.org/10.1126/science.268.5216.1466
  3. H. Masuda, F. Hasegawa, and S. Ono, Self ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution, J. Electrochem. Soc., 144, L127 (1997). https://doi.org/10.1149/1.1837634
  4. O. Jessensky, F. Müller, and U. Gosele, Self-organized formation of hexagonal pore arrays in anodic alumina, Appl. Phys. Lett., 72, 1173 (1998). https://doi.org/10.1063/1.121004
  5. A.-P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gosele, Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys., 84, 6023 (1998). https://doi.org/10.1063/1.368911
  6. A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37 (1972). https://doi.org/10.1038/238037a0
  7. A. Fujishima, X. Zhang, and D. A. Tryk, $TiO_2$ photocatalysis and related surface phenomena, Surf. Sci. Rep., 63, 515 (2008). https://doi.org/10.1016/j.surfrep.2008.10.001
  8. B. O'Regan and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal $TiO_2$ films, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  9. P. Roy, D. Kim, K. Lee, E. Spiecker, and P. Schmuki, $TiO_2$ nanotubes and their application in dye-sensitized solar cells, Nanoscale, 2, 45 (2010). https://doi.org/10.1039/B9NR00131J
  10. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, and M. Aucouturier, Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy, Surf. Interface Anal., 27, 629 (1999). https://doi.org/10.1002/(SICI)1096-9918(199907)27:7<629::AID-SIA551>3.0.CO;2-0
  11. M. Assefpour-Dezfuly, C. Vlachos, and E. H. Andrews, Oxide morphology and adhesive bonding on titanium surfaces, J. Mater. Sci., 19, 3626 (1984). https://doi.org/10.1007/BF02396935
  12. R. Beranek, H. Hildebrand, and P. Schmuki, Electrochem. Self-organized porous titanium oxide prepared in $H_{2}SO_{4}/HF$ electrolytes, Solid-State Lett., 6, B12 (2003). https://doi.org/10.1149/1.1545192
  13. D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res., 16, 3331 (2001). https://doi.org/10.1557/JMR.2001.0457
  14. P. Roy, S. Berger, and P. Schmuki, $TiO_2$ nanotubes: Synthesis and applications, Angew. Chem. Int. Ed., 50, 2904 (2011). https://doi.org/10.1002/anie.201001374
  15. D. Kowalski, D. Kim, and P. Schmuki, $TiO_2$ nanotubes, nanochannels and mesosponge: Self-organized formation and applications, Nano Today, 8, 235 (2013). https://doi.org/10.1016/j.nantod.2013.04.010
  16. K. Lee, A. Mazare, and P. Schmuki, One-dimensional titanium dioxide nanomaterials: Nanotubes, Chem. Rev., 114, 9385 (2014). https://doi.org/10.1021/cr500061m
  17. A. Guntherschulze and H. Betz, Die bewegung der ionengitter von isolatoren bei extremen elektrischen Feldstarken, Z. Phys., 92, 367 (1934). https://doi.org/10.1007/BF01340820
  18. K. R. Hebert, S. Albu, I. Paramasivam, and P. Schmuki, Morphological instability leading to formation of porous anodic oxide films, Nat. Mater., 11, 162 (2012). https://doi.org/10.1038/nmat3185
  19. K. Lee, J. Kim, H. Kim, Y. Lee, Y. Tak, D. Kim, and P. Schmuki, Effect of electrolyte conductivity on the formation of a $TiO_2$ for a dye-sensitized solar cell, J. Korean Phys. Soc., 54, 1027 (2009). https://doi.org/10.3938/jkps.54.1027
  20. J. F. Vanhumbeeck and J. Proost, Electrochemical processing of ultrathin metallic oxides featuring in-situ monitoring of growth stress transitions, 209th ECS Meeting, May 7-12, Denver, USA (2006).
  21. J. F. Vanhumbeeck and J. Proost, On the contribution of electrostriction to charge-induced stresses in anodic oxide films, Electrochim. Acta, 53, 6165 (2008). https://doi.org/10.1016/j.electacta.2007.11.028
  22. S. Ono, M. Saito, and H. Asoh, Self-ordering of anodic porous alumina formed in organic acid electrolytes, Electrochim. Acta, 51, 827 (2005). https://doi.org/10.1016/j.electacta.2005.05.058
  23. S. J. Garcia-Vergara, P. Skeldon, G. E. Thompson, and H. Habazaki, A flow model of porous anodic film growth on aluminium, Electrochimica Acta, 52, 681 (2006). https://doi.org/10.1016/j.electacta.2006.05.054
  24. S. P. Albu, P. Roy, S. Virtanen, and P. Schmuki, Self-organized $TiO_2$ nanotube arrays: Critical effects on morphology and growth, Isr. J. Chem., 50, 453 (2010). https://doi.org/10.1002/ijch.201000059
  25. H. Habazaki, K. Fushimi, K. Shimizu, P. Skeldon, and G. E. Thompson, Fast migration of fluoride ions in growing anodic titanium oxide, Electrochem. Commun., 9, 1222 (2007). https://doi.org/10.1016/j.elecom.2006.12.023
  26. S. Berger, S. P. Albu, F. Schmidt-Stein, H. Hildebrand, P. Schmuki, J. S. Hammond, D. F. Paul, and S. Reichlmaier, The origin for tubular growth of $TiO_2$ nanotubes: A fluoride rich layer between tube-walls, Surf. Sci., 605, L57 (2011). https://doi.org/10.1016/j.susc.2011.06.019
  27. W. Wei, S. Berger, C. Hauser, K. Meyer, M. Yang, and P. Schmuki, Transition of $TiO_2$ nanotubes to nanopores for electrolytes with very low water contents, Electrochem. Commun., 12, 1184 (2010). https://doi.org/10.1016/j.elecom.2010.06.014
  28. J. Macak, H. Tsuchiya, and P. Schmuki, High-aspect-ratio $TiO_2$ nanotubes by anodization of titanium, Angew. Chem. Int. Ed., 44, 2100 (2005) https://doi.org/10.1002/anie.200462459
  29. J. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki, Smooth anodic $TiO_2$ nanotubes, Angew. Chem. Int. Ed., 44, 7463 (2005). https://doi.org/10.1002/anie.200502781
  30. H. Tsuchiya, J. M. Macak, L. Taveira, and P. Schmuki, Fabrication and characterization of smooth high aspect ratio zirconia nanotubes, Chem. Phys. Lett., 410, 188 (2005). https://doi.org/10.1016/j.cplett.2005.05.065
  31. H. Tsuchiya, J. M. Macak, L. Taveira, and P. Schmuki, Formation of self-organized zirconia nanostructure, ECS Trans., 1, 351 (2006).
  32. S. Berger, F. Jakubka, and P. Schmuki, Formation of hexagonally ordered nanoporous anodic zirconia, Electrochem. Commun., 10, 1916 (2008). https://doi.org/10.1016/j.elecom.2008.10.002
  33. H. Tsuchiya and P. Schmuki, Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization, Electrochem. Commun., 7, 49 (2005). https://doi.org/10.1016/j.elecom.2004.11.004
  34. I. Sieber, B. Kannan, and P. Schmuki, Self-assembled porous tantalum oxide prepared in H2SO4/HF electrolytes, Electrochem. Solid-State Lett., 8, J10 (2005). https://doi.org/10.1149/1.1859676
  35. I. Sieber and P. Schmuki, Porous tantalum oxide prepared by electrochemical anodic oxidation, J. Electrochem. Soc., 152, C639 (2005). https://doi.org/10.1149/1.1997153
  36. H. A. El-Sayed and V. I. Birss, Controlled interconversion of nanoarray of Ta dimples and high aspect ratio Ta oxide nanotubes, Nano Lett., 9, 1350 (2009). https://doi.org/10.1021/nl803010v
  37. S. P. Albu, A. Ghicov, and P. Schmuki, High aspect ratio, self-ordered iron oxide nanopores formed by anodization of Fe in ethylene glycol/NH4F electrolytes, Phys. Status Solidi Rapid Res. Lett., 3, 64 (2009). https://doi.org/10.1002/pssr.200802285
  38. T. D. Burleigh, P. Schmuki, and S. Virtanen, Properties of the nanoporous anodic oxide electrochemically grown on steel in hot 50% NaOH, J. Electrochem. Soc., 156, C45 (2009). https://doi.org/10.1149/1.3021029
  39. S. K. Mohapatra, S. E. John, S. Banerjee, and M. Misra, Water photooxidation by smooth and ultrathin ${\alpha}$-$Fe_2O_3$ nanotube, Arrays Chem. Mater., 21, 3048 (2009).
  40. I. Sieber, H. Hildebrand, A. Friedrich, and P. Schmuki, Formation of self-organized niobium porous oxide on niobium, Electrochem. Commun., 7, 97 (2005). https://doi.org/10.1016/j.elecom.2004.11.012
  41. W. Wei, K. Lee, S. Shaw, and P. Schmuki, Anodic formation of high aspect ratio, self-ordered $Nb_2O_5$ nanotubes, Chem. Commun., 48, 4244 (2012). https://doi.org/10.1039/c2cc31007d
  42. C.-Y. Lee, K. Lee, and P. Schmuki, Anodic formation of self-organized cobalt oxide nanoporous layers, Angew. Chem. Int. Ed., 52, 2077 (2013). https://doi.org/10.1002/anie.201208793
  43. Y. Yang, S. P. Albu, D. Kim, and P. Schmuki, Enabling the anodic growth of highly ordered $V_2O_5$ nanoporous/nanotubular structures, Angew. Chem. Int. Ed., 50, 9071 (2011). https://doi.org/10.1002/anie.201104029
  44. R. Hahn, J. M. Macak, and P. Schmuki, Rapid anodic growth of $TiO_2$ and $WO_3$ nanotubes in fluoride free electrolytes, Electorchem. Commun., 9, 947 (2007). https://doi.org/10.1016/j.elecom.2006.11.037
  45. W. Wei, R. Kirchgeorg, K. Lee, S. So, and P. Schmuki, Nitrates: A new class of electrolytes for the rapid anodic growth of self-ordered oxide layers on Ti and Ta, Phys. Status Solidi Rapid Res. Lett., 5, 394 (2011). https://doi.org/10.1002/pssr.201105377
  46. D. Kim, K. Lee, P. Roy, B.I. Birajdar, E. Spiecker, and S. Schmuki, Formation of a non-thickness-limited titanium dioxide and its use in dye-sensitized solar cells, Angew. Chem. Int. Ed., 48, 9326 (2009). https://doi.org/10.1002/anie.200904455
  47. K. Lee, D. Kim, P. Roy, I. Paramasivam, B. I. Birajdar, E. Spiecker, and P. Schmuki, Anodic formation of thick anatase $TiO_2$ mesosponge layers for high-efficiency Photocatalysis, J. Am. Chem. Soc., 132, 1478 (2010). https://doi.org/10.1021/ja910045x
  48. K. Lee, D. Kim, and P. Schmuki, Highly self-ordered $TiO_2$ structures by in a hot glycerol electrolyte, Chem. Commun., 47, 5789 (2011). https://doi.org/10.1039/c1cc11160d
  49. K. Lee, Understanding the formation of anodic nanoporous $TiO_2$ structures in a hot glycerol/phosphate electrolyte, J. Electrochem. Soc., 164, E5 (2017). https://doi.org/10.1149/2.0481702jes