참고문헌
- S. Kim, J. Lim, and J. Choi, Preparation of polymer nonotubes/ nanowires by using inorganic porous templates, Polym. Sci. Technol., 17, 742 (2006).
- H. Masuda and K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumi-na, Science, 268, 1466 (1995). https://doi.org/10.1126/science.268.5216.1466
- H. Masuda, F. Hasegawa, and S. Ono, Self ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution, J. Electrochem. Soc., 144, L127 (1997). https://doi.org/10.1149/1.1837634
- O. Jessensky, F. Müller, and U. Gosele, Self-organized formation of hexagonal pore arrays in anodic alumina, Appl. Phys. Lett., 72, 1173 (1998). https://doi.org/10.1063/1.121004
- A.-P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gosele, Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys., 84, 6023 (1998). https://doi.org/10.1063/1.368911
- A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37 (1972). https://doi.org/10.1038/238037a0
-
A. Fujishima, X. Zhang, and D. A. Tryk,
$TiO_2$ photocatalysis and related surface phenomena, Surf. Sci. Rep., 63, 515 (2008). https://doi.org/10.1016/j.surfrep.2008.10.001 -
B. O'Regan and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal
$TiO_2$ films, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0 -
P. Roy, D. Kim, K. Lee, E. Spiecker, and P. Schmuki,
$TiO_2$ nanotubes and their application in dye-sensitized solar cells, Nanoscale, 2, 45 (2010). https://doi.org/10.1039/B9NR00131J - V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, and M. Aucouturier, Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy, Surf. Interface Anal., 27, 629 (1999). https://doi.org/10.1002/(SICI)1096-9918(199907)27:7<629::AID-SIA551>3.0.CO;2-0
- M. Assefpour-Dezfuly, C. Vlachos, and E. H. Andrews, Oxide morphology and adhesive bonding on titanium surfaces, J. Mater. Sci., 19, 3626 (1984). https://doi.org/10.1007/BF02396935
-
R. Beranek, H. Hildebrand, and P. Schmuki, Electrochem. Self-organized porous titanium oxide prepared in
$H_{2}SO_{4}/HF$ electrolytes, Solid-State Lett., 6, B12 (2003). https://doi.org/10.1149/1.1545192 - D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res., 16, 3331 (2001). https://doi.org/10.1557/JMR.2001.0457
-
P. Roy, S. Berger, and P. Schmuki,
$TiO_2$ nanotubes: Synthesis and applications, Angew. Chem. Int. Ed., 50, 2904 (2011). https://doi.org/10.1002/anie.201001374 -
D. Kowalski, D. Kim, and P. Schmuki,
$TiO_2$ nanotubes, nanochannels and mesosponge: Self-organized formation and applications, Nano Today, 8, 235 (2013). https://doi.org/10.1016/j.nantod.2013.04.010 - K. Lee, A. Mazare, and P. Schmuki, One-dimensional titanium dioxide nanomaterials: Nanotubes, Chem. Rev., 114, 9385 (2014). https://doi.org/10.1021/cr500061m
- A. Guntherschulze and H. Betz, Die bewegung der ionengitter von isolatoren bei extremen elektrischen Feldstarken, Z. Phys., 92, 367 (1934). https://doi.org/10.1007/BF01340820
- K. R. Hebert, S. Albu, I. Paramasivam, and P. Schmuki, Morphological instability leading to formation of porous anodic oxide films, Nat. Mater., 11, 162 (2012). https://doi.org/10.1038/nmat3185
-
K. Lee, J. Kim, H. Kim, Y. Lee, Y. Tak, D. Kim, and P. Schmuki, Effect of electrolyte conductivity on the formation of a
$TiO_2$ for a dye-sensitized solar cell, J. Korean Phys. Soc., 54, 1027 (2009). https://doi.org/10.3938/jkps.54.1027 - J. F. Vanhumbeeck and J. Proost, Electrochemical processing of ultrathin metallic oxides featuring in-situ monitoring of growth stress transitions, 209th ECS Meeting, May 7-12, Denver, USA (2006).
- J. F. Vanhumbeeck and J. Proost, On the contribution of electrostriction to charge-induced stresses in anodic oxide films, Electrochim. Acta, 53, 6165 (2008). https://doi.org/10.1016/j.electacta.2007.11.028
- S. Ono, M. Saito, and H. Asoh, Self-ordering of anodic porous alumina formed in organic acid electrolytes, Electrochim. Acta, 51, 827 (2005). https://doi.org/10.1016/j.electacta.2005.05.058
- S. J. Garcia-Vergara, P. Skeldon, G. E. Thompson, and H. Habazaki, A flow model of porous anodic film growth on aluminium, Electrochimica Acta, 52, 681 (2006). https://doi.org/10.1016/j.electacta.2006.05.054
-
S. P. Albu, P. Roy, S. Virtanen, and P. Schmuki, Self-organized
$TiO_2$ nanotube arrays: Critical effects on morphology and growth, Isr. J. Chem., 50, 453 (2010). https://doi.org/10.1002/ijch.201000059 - H. Habazaki, K. Fushimi, K. Shimizu, P. Skeldon, and G. E. Thompson, Fast migration of fluoride ions in growing anodic titanium oxide, Electrochem. Commun., 9, 1222 (2007). https://doi.org/10.1016/j.elecom.2006.12.023
-
S. Berger, S. P. Albu, F. Schmidt-Stein, H. Hildebrand, P. Schmuki, J. S. Hammond, D. F. Paul, and S. Reichlmaier, The origin for tubular growth of
$TiO_2$ nanotubes: A fluoride rich layer between tube-walls, Surf. Sci., 605, L57 (2011). https://doi.org/10.1016/j.susc.2011.06.019 -
W. Wei, S. Berger, C. Hauser, K. Meyer, M. Yang, and P. Schmuki, Transition of
$TiO_2$ nanotubes to nanopores for electrolytes with very low water contents, Electrochem. Commun., 12, 1184 (2010). https://doi.org/10.1016/j.elecom.2010.06.014 -
J. Macak, H. Tsuchiya, and P. Schmuki, High-aspect-ratio
$TiO_2$ nanotubes by anodization of titanium, Angew. Chem. Int. Ed., 44, 2100 (2005) https://doi.org/10.1002/anie.200462459 -
J. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki, Smooth anodic
$TiO_2$ nanotubes, Angew. Chem. Int. Ed., 44, 7463 (2005). https://doi.org/10.1002/anie.200502781 - H. Tsuchiya, J. M. Macak, L. Taveira, and P. Schmuki, Fabrication and characterization of smooth high aspect ratio zirconia nanotubes, Chem. Phys. Lett., 410, 188 (2005). https://doi.org/10.1016/j.cplett.2005.05.065
- H. Tsuchiya, J. M. Macak, L. Taveira, and P. Schmuki, Formation of self-organized zirconia nanostructure, ECS Trans., 1, 351 (2006).
- S. Berger, F. Jakubka, and P. Schmuki, Formation of hexagonally ordered nanoporous anodic zirconia, Electrochem. Commun., 10, 1916 (2008). https://doi.org/10.1016/j.elecom.2008.10.002
- H. Tsuchiya and P. Schmuki, Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization, Electrochem. Commun., 7, 49 (2005). https://doi.org/10.1016/j.elecom.2004.11.004
- I. Sieber, B. Kannan, and P. Schmuki, Self-assembled porous tantalum oxide prepared in H2SO4/HF electrolytes, Electrochem. Solid-State Lett., 8, J10 (2005). https://doi.org/10.1149/1.1859676
- I. Sieber and P. Schmuki, Porous tantalum oxide prepared by electrochemical anodic oxidation, J. Electrochem. Soc., 152, C639 (2005). https://doi.org/10.1149/1.1997153
- H. A. El-Sayed and V. I. Birss, Controlled interconversion of nanoarray of Ta dimples and high aspect ratio Ta oxide nanotubes, Nano Lett., 9, 1350 (2009). https://doi.org/10.1021/nl803010v
- S. P. Albu, A. Ghicov, and P. Schmuki, High aspect ratio, self-ordered iron oxide nanopores formed by anodization of Fe in ethylene glycol/NH4F electrolytes, Phys. Status Solidi Rapid Res. Lett., 3, 64 (2009). https://doi.org/10.1002/pssr.200802285
- T. D. Burleigh, P. Schmuki, and S. Virtanen, Properties of the nanoporous anodic oxide electrochemically grown on steel in hot 50% NaOH, J. Electrochem. Soc., 156, C45 (2009). https://doi.org/10.1149/1.3021029
-
S. K. Mohapatra, S. E. John, S. Banerjee, and M. Misra, Water photooxidation by smooth and ultrathin
${\alpha}$ -$Fe_2O_3$ nanotube, Arrays Chem. Mater., 21, 3048 (2009). - I. Sieber, H. Hildebrand, A. Friedrich, and P. Schmuki, Formation of self-organized niobium porous oxide on niobium, Electrochem. Commun., 7, 97 (2005). https://doi.org/10.1016/j.elecom.2004.11.012
-
W. Wei, K. Lee, S. Shaw, and P. Schmuki, Anodic formation of high aspect ratio, self-ordered
$Nb_2O_5$ nanotubes, Chem. Commun., 48, 4244 (2012). https://doi.org/10.1039/c2cc31007d - C.-Y. Lee, K. Lee, and P. Schmuki, Anodic formation of self-organized cobalt oxide nanoporous layers, Angew. Chem. Int. Ed., 52, 2077 (2013). https://doi.org/10.1002/anie.201208793
-
Y. Yang, S. P. Albu, D. Kim, and P. Schmuki, Enabling the anodic growth of highly ordered
$V_2O_5$ nanoporous/nanotubular structures, Angew. Chem. Int. Ed., 50, 9071 (2011). https://doi.org/10.1002/anie.201104029 -
R. Hahn, J. M. Macak, and P. Schmuki, Rapid anodic growth of
$TiO_2$ and$WO_3$ nanotubes in fluoride free electrolytes, Electorchem. Commun., 9, 947 (2007). https://doi.org/10.1016/j.elecom.2006.11.037 - W. Wei, R. Kirchgeorg, K. Lee, S. So, and P. Schmuki, Nitrates: A new class of electrolytes for the rapid anodic growth of self-ordered oxide layers on Ti and Ta, Phys. Status Solidi Rapid Res. Lett., 5, 394 (2011). https://doi.org/10.1002/pssr.201105377
- D. Kim, K. Lee, P. Roy, B.I. Birajdar, E. Spiecker, and S. Schmuki, Formation of a non-thickness-limited titanium dioxide and its use in dye-sensitized solar cells, Angew. Chem. Int. Ed., 48, 9326 (2009). https://doi.org/10.1002/anie.200904455
-
K. Lee, D. Kim, P. Roy, I. Paramasivam, B. I. Birajdar, E. Spiecker, and P. Schmuki, Anodic formation of thick anatase
$TiO_2$ mesosponge layers for high-efficiency Photocatalysis, J. Am. Chem. Soc., 132, 1478 (2010). https://doi.org/10.1021/ja910045x -
K. Lee, D. Kim, and P. Schmuki, Highly self-ordered
$TiO_2$ structures by in a hot glycerol electrolyte, Chem. Commun., 47, 5789 (2011). https://doi.org/10.1039/c1cc11160d -
K. Lee, Understanding the formation of anodic nanoporous
$TiO_2$ structures in a hot glycerol/phosphate electrolyte, J. Electrochem. Soc., 164, E5 (2017). https://doi.org/10.1149/2.0481702jes