DOI QR코드

DOI QR Code

Nanomechanical properties and wear resistance of dental restorative materials

  • Karimzadeh, A. (Fatigue and Fracture Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology) ;
  • Ayatollahi, Majid R. (Fatigue and Fracture Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology) ;
  • Nikkhooyifar, M. (Fatigue and Fracture Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology) ;
  • Bushroa, A.R. (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya)
  • Received : 2016.08.31
  • Accepted : 2017.10.16
  • Published : 2017.12.25

Abstract

The effects of thermocycling procedure and material shade on the mechanical properties and wear resistance of resin-based dental restorative materials are investigated. The modulus of elasticity, hardness, plasticity index and wear resistance are determined for the conventional composite, the nanohybrid composite and the nanofilled dental composites. Disc-shape samples are prepared from each material to investigate the effects of thermocycling procedure on the mechanical properties and wear resistance of different types of dental restorative materials. In this respect, a group of samples is thermocycled and the other group is stored in ambient conditions. Then nano-indentation and nano-scratch tests are performed on the samples to measure their mechanical properties and wear resistance. Results show that the A1E shade of the dental nanocomposite possesses higher modulus of elasticity and hardness values compared to the two other shades. According to the experimental results, the mean values for the modulus of elasticity and hardness of the A1E shade of the nanocomposite are 13.71 GPa and 1.08 GPa, respectively. The modulus of elasticity and hardness of the conventional dental composite increase around 30 percent in the oral environment due to the moisture and temperature changes. The wear resistance of the dental composites is also significantly affected by moisture and temperature changes in the oral conditions. It is observed that thermocycling has no significant effect on the hardness, plasticity index and wear resistance of the nanohybrid composite and the nanocomposite dental materials.

Keywords

Acknowledgement

Supported by : University of Malaya

References

  1. Aguiar, F.H.B., Lazzari, C.R., Lima, D.A.N.L., Ambrosano, G.M.B. and Lovadino, J.R. (2005), "Effect of light curing tip distance and resin shade on microhardness of a hybrid resin composite", Brazil. Oral Res., 19, 302-306. https://doi.org/10.1590/S1806-83242005000400012
  2. Aldousiri, B., Dhakal, H., Onuh, S., Zhang, Z. and Bennett, N. (2011), "Nanoindentation behaviour of layered silicate filled spent polyamide-12 nanocomposites", Polym. Test., 30, 688-692. https://doi.org/10.1016/j.polymertesting.2011.05.008
  3. Askikfgajer, V., Hainety, F.S. and Hainety, A.S. (2010), Filtek$^{TM}$Z350 xt, Universal Restorative System, M. ESPE, USA.
  4. Ayatollahi, M.R., Doagou-Rad, S. and Shadlou, S. (2012), "Nano-/microscale investigation of tribological and mechanical properties of epoxy/mwnt nanocomposites", Macromol. Mater. Eng., 297(7), 689-701. https://doi.org/10.1002/mame.201100271
  5. Beun, S., Glorieux, T., Devaux, J., Vreven, J. and Leloup, G. (2007), "Characterization of nanofilled compared to universal and microfilled composites", Dent. Mater., 23, 51-59. https://doi.org/10.1016/j.dental.2005.12.003
  6. Bindu, M.G., Satapathy, B.K., Jaggi, H.S. and Ray, A.R. (2013), "Size-scale effects of silica on bis-GMA/TEGDMA based nanohybrid dental restorative composites", Compos. Part. B-Eng., 53, 92-102. https://doi.org/10.1016/j.compositesb.2013.04.046
  7. Briscoe, B.J. and Sinha, S.K. (2003), "Scratch resistance and localised damage characteristics of polymer surfaces-a review", Materialwissenschaft und Werkstofftechnik, 34(10-11), 989-1002. https://doi.org/10.1002/mawe.200300687
  8. Carsi, M., Sanchis, M.J., Diaz-Calleja, R., Riande, E. and Nugent, M.J.D. (2013), "Effect of slight crosslinking on the mechanical relaxation behavior of poly(2-ethoxyethyl methacrylate) chains", Eur. Polym. J., 49(6), 1495-1502. https://doi.org/10.1016/j.eurpolymj.2012.12.012
  9. Choi, B., Lee, S.W. and Eom, K. (2016), "Nanomechanical behaviors and properties of amyloid fibrils", Multisc. Multiphys. Mech., 1(1), 53-64. https://doi.org/10.12989/mmm.2016.1.1.053
  10. Chung, S., Yap, A., Tsai, K. and Yap, F. (2005), "Elastic modulus of resin-based dental restorative materials: a microindentation approach", J. Biomed. Mater. Res. B, 72, 246-253.
  11. Chung, S.M., Yap, A.U.J., Koh, W.K., Tsai, K.T. and Lim, C.T. (2004), "Measurement of Poisson's ratio of dental composite restorative materials", Biomater., 25(13), 2455-2460. https://doi.org/10.1016/j.biomaterials.2003.09.029
  12. Demarco, F.F., Correa, M.B., Cenci, M.S., Moraes, R.R. and Opdam, N.J.M. (2012), "Longevity of posterior composite restorations: not only a matter of materials", Dent. Mater., 28, 87-101. https://doi.org/10.1016/j.dental.2011.09.003
  13. Eftekhari, M. and Fatemi, A. (2016), "Tensile behavior of thermoplastic composites including temperature, moisture, and hygrothermal effects", Polym. Test., 51, 151-164. https://doi.org/10.1016/j.polymertesting.2016.03.011
  14. Ferracane, J.L. (2011), "Resin composite-state of the art", Dent. Mater., 27(1), 29-38. https://doi.org/10.1016/j.dental.2010.10.020
  15. Fu, J., Liu, W., Hao, Z., Wu, X., Yin, J., Panjiyar, A., Liu, X., Shen, J. and Wang, H. (2014), "Characterization of a low shrinkage dental composite containing bismethylene spiroorthocarbonate expanding monomer", Int. J. Mol. Sci., 15, 2400-2412. https://doi.org/10.3390/ijms15022400
  16. Gladys, S., Van Meerbeek, B., Braem, M., Lambrechts, P. and Vanherle, G. (1997), "Comparative physico-mechanical characterization of new hybrid restorative materials with conventional glass-ionomer and resin composite restorative materials", J. Dent. Res., 76, 883-894. https://doi.org/10.1177/00220345970760041001
  17. Ilie, N. and Stawarczyk, B. (2014), "Quantification of the amount of light passing through zirconia: the effect of material shade, thickness, and curing conditions", J. Dent., 42(6), 684-690. https://doi.org/10.1016/j.jdent.2014.03.007
  18. Janda, R., Roulet, J., Latta, M. and Ruttermann, S. (2006), "The effects of thermocycling on the flexural strength and flexural modulus of modern resin-based filling materials", Dent. Mater., 22, 1103-1108. https://doi.org/10.1016/j.dental.2005.09.005
  19. Karimzadeh, A. and Ayatollahi, M.R. (2012), "Investigation of mechanical and tribological properties of bone cement by nanoindentation and nano-scratch experiments", Polym Test, 31(6), 828-833. https://doi.org/10.1016/j.polymertesting.2012.06.002
  20. Karimzadeh, A., Ayatollahi, M.R., Bushroa, A.R. and Herliansyah, M.K. (2014), "Effect of sintering temperature on mechanical and tribological properties of hydroxyapatite measured by nanoindentation and nanoscratch experiments", Ceram. Int., 40 (7 part A), 9159-9164. https://doi.org/10.1016/j.ceramint.2014.01.131
  21. Karimzadeh, A., Ayatollahi, M.R. and Shirazi, H.A. (2014), "Mechanical properties of a dental nano-composite in moist media determined by nano-scale measurement ", Int. J. Mater. Mech. Manuf., 2(1), 67-72.
  22. Leprince, J.G., Palin, W.M., Hadis, M.A., Devaux, J. and Leloup, G. (2013), "Progress in dimethacrylate-based dental composite technology and curing efficiency", Dent. Mater., 29(2), 139-156. https://doi.org/10.1016/j.dental.2012.11.005
  23. Lodhi, T.A. (2006), "Surface hardness of different shades and types of resin composite cured with a high power led light curing unit", M.Sc., University of the Western Cape, South Africa, South Africa.
  24. Machado, A.L., Puckett, A.D., Breeding, L.C., Wady, A.F. and Vergani, C.E. (2012), "Effect of thermocycling on the flexural and impact strength of urethane-based and high-impact denture base resins", Gerodontol., 29(2), e318-e323. https://doi.org/10.1111/j.1741-2358.2011.00474.x
  25. Makvandi, P., Ghaemy, M. and Mohseni, M. (2016), "Synthesis and characterization of photo-curable bis-quaternary ammonium dimethacrylate with antimicrobial activity for dental restoration materials", Eur. Polym. J., 74, 81-90. https://doi.org/10.1016/j.eurpolymj.2015.11.011
  26. Maserejian, N.N., Trachtenberg, F.L., Hauser, R., McKinlay, S., Shrader, P., Tavares, M. and Bellinger, D.C. (2012), "Dental composite restorations and psychosocial function in children", Pediatrics, peds-2011.
  27. Melo, M.A.S., Guedes, S.F.F., Xu, H.H.K. and Rodrigues, L.K.A. (2013), "Nanotechnology-based restorative materials for dental caries management", Trend. Biotech., 31(8), 459-467. https://doi.org/10.1016/j.tibtech.2013.05.010
  28. Moszner, N. and Salz, U. (2001), "New developments of polymeric dental composites", Prog. Polym. Sci., 26(4), 535-576. https://doi.org/10.1016/S0079-6700(01)00005-3
  29. Nakamura, T., Wakabayashi, K., Kinuta, S., Nishida, H., Miyamae, M. and Yatani, H. (2010), "Mechanical properties of new selfadhesive resin-based cement", J. Prosthod. Res., 54(2), 59-64. https://doi.org/10.1016/j.jpor.2009.09.004
  30. Oliveira, M.A.V.C.d., Quagliatto, P.S., Magalhaes, D. and Biffi, J.C.G. (2012), "Effects of bleaching agents and adhesive systems in dental pulp: a literature review", Brazil. J. Oral Sci., 11, 428-432. https://doi.org/10.1590/S1677-32252012000400001
  31. Oliver, W.C. and Pharr, G.M. (2004), "Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology", J. Mater. Res., 19, 3-20. https://doi.org/10.1557/jmr.2004.19.1.3
  32. Ozak, S.T. and Ozkan, P. (2013), "Nanotechnology and dentistry", Eur. J. Dent., 7(1), 145-151.
  33. Ozturk, E., Chiang, Y.C., Cosgun, E., Bolay, S., Hickel, R. and Ilie, N. (2013), "Effect of resin shades on opacity of ceramic veneers and polymerization efficiency through ceramics", J. Dent., 41, e8-e14. https://doi.org/10.1016/j.jdent.2013.06.001
  34. Papadogiannis, D., Lakes, R., Papadogiannis, Y., Palaghias, G. and Helvatjoglu-Antoniades, M. (2008), "The effect of temperature on the viscoelastic properties of nano-hybrid composites", Dent. Mater., 24, 257-266. https://doi.org/10.1016/j.dental.2007.05.009
  35. Park, J., Ye, Q., Topp, E.M., Misra, A., Kieweg, S.L. and Spencer, P. (2010), "Effect of photoinitiator system and water content on dynamic mechanical properties of a light-cured bisGMA/HEMA dental resin", J. Biomed. Mater. Res. A, 93A(4), 1245-1251.
  36. Passos, S.P., Kimpara, E.T., Bottino, M.A., Santos -Jr, G.C. and Rizkalla, A.S. (2013), "Effect of ceramic shade on the degree of conversion of a dual-cure resin cement analyzed by FTIR", Dent. Mater., 29(3), 317-323. https://doi.org/10.1016/j.dental.2012.11.014
  37. Price, R.B.T., Felix, C.A. and Andreou, P. (2005), "Knoop hardness of ten resin composites irradiated with high-power LED and quartz-tungsten-halogen lights", Biomater., 26(15), 2631-2641. https://doi.org/10.1016/j.biomaterials.2004.06.050
  38. Sabbagh, J., Vreven, J. and Leloup, G. (2002), "Dynamic and static moduli of elasticity of resin-based materials", Dent. Mater., 18, 64-71. https://doi.org/10.1016/S0109-5641(01)00021-5
  39. Shen, L., Tjiu, W.C. and Liu, T. (2005), "Nanoindentation and morphological studies on injection-molded nylon-6 nanocomposites", Polymer, 46(25), 11969-11977. https://doi.org/10.1016/j.polymer.2005.10.006
  40. Shen, L., Wang, L., Liu, T. and He, C. (2006), "Nanoindentation and morphological studies of epoxy nanocomposites", Macromol. Mater. Eng., 291, 1358-1366. https://doi.org/10.1002/mame.200600184
  41. Shokrieh, M.M., Hosseinkhani, M.R., Naimi-Jamal, M.R. and Tourani, H. (2013), "Nanoindentation and nanoscratch investigations on graphene-based nanocomposites", Polym. Test., 32(1), 45-51. https://doi.org/10.1016/j.polymertesting.2012.09.001
  42. Sideridou, I.D., Karabela, M.M. and Vouvoudi, E.C. (2011), "Physical properties of current dental nanohybrid and nanofill light-cured resin composites", Dent. Mater., 27(6), 598-607. https://doi.org/10.1016/j.dental.2011.02.015
  43. Sowmya, S., Bumgardener, J.D., Chennazhi, K.P., Nair, S.V. and Jayakumar, R. (2013), "Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration", Prog. Polym. Sci., 38(10-11), 1748-1772. https://doi.org/10.1016/j.progpolymsci.2013.05.005
  44. Stewardson, D.A., Shortall, A.C. and Marquis, P.M. (2010), "The effect of clinically relevant thermocycling on the flexural properties of endodontic post materials", J. Dent., 38(5), 437-442. https://doi.org/10.1016/j.jdent.2010.02.003
  45. Tian, M., Gao, Y., Liu, Y., Liao, Y., Xu, R., Hedin, N.E. and Fong, H. (2007), "Bis-GMA/TEGDMA dental composites reinforced with electrospun nylon 6 nanocomposite nanofibers containing highly aligned fibrillar silicate single crystals", Polymer, 48(9), 2720-2728. https://doi.org/10.1016/j.polymer.2007.03.032
  46. Zhang, H., Yao, Y., Zhu, D., Mobasher, B. and Huang, L. (2016), "Tensile mechanical properties of basalt fiber reinforced polymer composite under varying strain rates and temperatures", Polym. Test, 51, 29-39. https://doi.org/10.1016/j.polymertesting.2016.02.006
  47. Zhou, C., Weir, M.D., Zhang, K., Deng, D., Cheng, L. and Xu, H.H.K. (2013), "Synthesis of new antibacterial quaternary ammonium monomer for incorporation into CaP nanocomposite", Dent. Mater., 29(8), 859-870. https://doi.org/10.1016/j.dental.2013.05.005

Cited by

  1. Assessment of Compressive Mechanical Behavior of Bis-GMA Polymer Using Hyperelastic Models vol.11, pp.10, 2019, https://doi.org/10.3390/polym11101571
  2. Assessment of Nano-Indentation Method in Mechanical Characterization of Heterogeneous Nanocomposite Materials Using Experimental and Computational Approaches vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-51904-4