Acknowledgement
Supported by : National Natural Science Foundation of China, Dalian University of Technology
References
- Akgoz, B. and Civalek, O. (2015), "Bending analysis of FG microbeams resting on Winkler elastic foundation via strain gradient elasticity", Compos. Struct., 134, 294-301. https://doi.org/10.1016/j.compstruct.2015.08.095
- Ansari, R., Gholami, R. and Sahmani, S. (2013), "Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory", Arch. Appl. Mech., 83(10), 1439-1449. https://doi.org/10.1007/s00419-013-0756-3
- Asthana, A., Momeni, K., Prasad, A., Yap, Y.K. and Yassar, R.S. (2011), "In situ observation of size-scale effects on the mechanical properties of ZnO nanowires", Nanotechnol., 22(26), 265712. https://doi.org/10.1088/0957-4484/22/26/265712
- Chen, Y.Z. (2003), "Interaction between compressive force and vibration frequency for a varying cross-section cantilever under action of generalized follower force", J. Sound Vib., 259(4), 991-999. https://doi.org/10.1006/jsvi.2002.5205
- Cheng, C.H. and Chen, T. (2015), "Size-dependent resonance and buckling behavior of nanoplates with high-order surface stress effects", Physica E, 67, 12-17. https://doi.org/10.1016/j.physe.2014.10.040
- Choi, J., Cho, M. and Kim, W. (2010), "Surface effects on the dynamic behavior of nanosized thin film resonator", Appl. Phys. Lett., 97(97), 171901. https://doi.org/10.1063/1.3502486
- Civalek, O. and Demir, C. (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Math. Comput., 289, 335-352.
- Cuenot, S., Fretigny, C., Demoustier-Champagne, S. and Nysten, B. (2004), "Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy", Phys. Rev. B, 69(16), 165410. https://doi.org/10.1103/PhysRevB.69.165410
- Ebrahimi, F., Shaghaghi, G.R. and Boreiry, M. (2016), "An investigation into the influence of thermal loading and surface effects on mechanical characteristics of nanotubes", Struct. Eng. Mech., 57(1), 179-200. https://doi.org/10.12989/sem.2016.57.1.179
- Elishakoff, I. (2005), "Controversy associated with the so-called "follower forces": Critical overview", Appl. Mech. Rev., 58(2), 117-142. https://doi.org/10.1115/1.1849170
- Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Arch. Ration. Mech. Anal., 57(4), 291-323. https://doi.org/10.1007/BF00261375
- Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solid. Struct., 14(6), 431-440. https://doi.org/10.1016/0020-7683(78)90008-2
- Hasheminejad, B.S.M., Gheshlaghi, B., Mirzaei, Y. and Abbasion, S. (2011), "Free transverse vibrations of cracked nanobeams with surface effects", Thin Solid Film., 519(8), 2477-2482. https://doi.org/10.1016/j.tsf.2010.12.143
- Ibach, H. (1997), "The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures", Surf. Sci. Rep., 29(5-6), 195-263. https://doi.org/10.1016/S0167-5729(97)00010-1
- Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J.X. and Yu, D.P. (2006), "Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy", Phys. Rev. B, 73(23), 235409. https://doi.org/10.1103/PhysRevB.73.235409
- Lachut, M.J. and Sader, J.E. (2007), "Effect of surface stress on the stiffness of cantilever plates", Phys. Rev. Lett., 99(20), 206102. https://doi.org/10.1103/PhysRevLett.99.206102
- Langthjem, M.A. and Sugiyama, Y. (2000), "Dynamic stability of columns subjected to follower loads: A survey", J. Sound Vib., 238(5), 809-851. https://doi.org/10.1006/jsvi.2000.3137
- Leung, A.Y.T. (2008), "Exact spectral elements for follower tension buckling by power series", J. Sound Vib., 309(3-5), 718-729. https://doi.org/10.1016/j.jsv.2007.07.058
- Li, L., Li, X. and Hu, Y. (2016a), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010
- Li, X.F., Jiang, S.N. and Lee, K.Y. (2016b), "Surface effect on dynamic stability of microcantilevers on an elastic foundation under a subtangential follower force", Int. J. Mech. Mater. Des., doi:10.1007/s10999-016-9362-1.
- Li, X.F., Wang, B.L., Tang, G.J. and Lee, K.Y. (2011), "Size effect in transverse mechanical behavior of one-dimensional nanostructures", Physica E, 44(1), 207-214. https://doi.org/10.1016/j.physe.2011.08.016
- Li, X.F., Zhang, H. and Lee, K.Y. (2014), "Dependence of Young's modulus of nanowires on surface effect", Int. J. Mech. Sci., 81, 120-125. https://doi.org/10.1016/j.ijmecsci.2014.02.018
- Li, X.F., Zou, J., Jiang, S.N. and Lee, K.Y. (2016c), "Resonant frequency and flutter instability of a nanocantilever with the surface effects", Compos. Struct., 153, 645-653. https://doi.org/10.1016/j.compstruct.2016.06.065
- Mercan, K. and Civalek, O. (2016), "Dsc method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix", Compos. Struct., 143, 300-309. https://doi.org/10.1016/j.compstruct.2016.02.040
- Mercan, K. and Civalek, O. (2017), "Buckling analysis of Silicon carbide nanotubes (SiCNTs) with surface effect and nonlocal elasticity using the method of HDQ", Compos. Part B, 114, 34-45. https://doi.org/10.1016/j.compositesb.2017.01.067
- Moon, W. and Hwang, H. (2008), "Atomistic study of structures and elastic properties of single crystalline ZnO nanotubes", Nanotechnol., 19(22), 225703. https://doi.org/10.1088/0957-4484/19/22/225703
- Mutyalarao, M., Bharathi, D. and Rao, B.N. (2013), "Dynamic stability of cantilever columns under a tip-concentrated subtangential follower force", Math. Mech. Solid., 18(5), 449-463. https://doi.org/10.1177/1081286512442436
- Park, H.S. (2008), "Surface stress effects on the resonant properties of silicon nanowires", J. Appl. Phys., 103(12), 123504. https://doi.org/10.1063/1.2939576
- Pedersen, P. (1977), "Influence of boundary conditions on the stability of a column under non-conservative load", Int. J. Solid. Struct., 13(5), 445-455. https://doi.org/10.1016/0020-7683(77)90039-7
- Pilkey, W.D. (1994), Formulas for Stress, Strain, and Structural Matrices, John Wiley & Sons, Inc.
- Shaat, M. and Mahmoud, F.F. (2015), "A new Mindlin FG plate model incorporating microstructure and surface energy effects", Struct. Eng. Mech., 53(1), 105-130. https://doi.org/10.12989/sem.2015.53.1.105
- Shen, J., Wu, J.X., Song, J., Li, X.F. and Lee, K.Y. (2012), "Flexural waves of carbon nanotubes based on generalized gradient elasticity", Phys. Stat. Sol. B, 249(1), 50-57. https://doi.org/10.1002/pssb.201147006
- Shenoy, V.B. (2005), "Atomistic calculations of elastic properties of metallic fcc crystal surfaces", Phys. Rev. B, 71(9), 094104. https://doi.org/10.1103/PhysRevB.71.094104
- Shi, M.X., Liu, B., Zhang, Z.Q., Zhang, Y.W. and Gao, H.J. (2012), "Direct influence of residual stress on the bending stiffness of cantilever beams", Proc. R. Soc. A, 468(2145), 2595-2613. https://doi.org/10.1098/rspa.2011.0662
- Sundararajan, C. (1976), "Influence of an elastic end support on the vibration and stability of Beck's column", Int. J. Mech. Sci., 18(5), 239-241. https://doi.org/10.1016/0020-7403(76)90005-9
- Wang, G.F. and Feng, X.Q. (2007), "Effects of surface elasticity and residual surface tension on the natural frequency of microbeams", Appl. Phys. Lett., 90(23), 231904. https://doi.org/10.1063/1.2746950
- Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W. and Wang, T. (2011), "Surface stress effect in mechanics of nanostructured materials", Acta Mech. Solida Sin., 24(1), 52-82. https://doi.org/10.1016/S0894-9166(11)60009-8
- Wang, K. and Wang, B. (2015), "Timoshenko beam model for the vibration analysis of a cracked nanobeam with surface energy", J. Vib. Control, 21(12), 2452-2464. https://doi.org/10.1177/1077546313513054
- Wang, K.F. and Wang, B. (2014), "Effect of surface energy on the sensing performance of bridged nanotube-based micro-mass sensors", J. Intell. Mater. Syst. Struct., 25(17), 2177-2186. https://doi.org/10.1177/1045389X13517317
- Wu, J.X., Li, X.F., Tang, A.Y. and Lee, K.Y. (2017), "Free and forced transverse vibration of nanowires with surface effects", J. Vib. Control, 23(13), 2064-2077. https://doi.org/10.1177/1077546315610302
- Xiang, Y., Wang, C.M., Kitipornchai, S. and Wang, Q. (2010), "Dynamic instability of nanorods/nanotubes subjected to an end follower force", J. Eng. Mech., 136(8), 1054-1058. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000135
- Yao, H., Yun, G., Bai, N. and Li, J. (2012), "Surface elasticity effect on the size-dependent elastic property of nanowires", J. Appl. Phys., 111(8), 083506. https://doi.org/10.1063/1.3703671
- Zang, X., Zhou, Q., Chang, J., Liu, Y. and Lin, L. (2015), "Graphene and carbon nanotube (CNT) in MEMS/NEMS applications", Microelectron. Eng., 132, 192-206. https://doi.org/10.1016/j.mee.2014.10.023
- Zhang, Y.Q., Pang, M. and Chen, W.Q. (2015), "Transverse vibrations of embedded nanowires under axial compression with high-order surface stress effects", Physica E, 66, 238-244. https://doi.org/10.1016/j.physe.2014.10.027
- Zheng, X.P., Cao, Y.P., Li, B., Feng, X.Q. and Wang, G.F. (2010), "Surface effects in various bending-based test methods for measuring the elastic property of nanowires", Nanotechnol., 21(20), 205702. https://doi.org/10.1088/0957-4484/21/20/205702
- Zhu, J., Yang, J.S. and Ru, C.Q. (2014), "Buckling of an elastic plate due to surface-attached thin films with intrinsic stresses", Struct. Eng. Mech., 52(1), 89-95. https://doi.org/10.12989/sem.2014.52.1.089
Cited by
- Fluid-conveying piezoelectric nanosensor: Nonclassical effects on vibration-stability analysis vol.76, pp.5, 2017, https://doi.org/10.12989/sem.2020.76.5.619