DOI QR코드

DOI QR Code

Quantitative Assessment using SNR and CNR in Cerebrovascular Diseases : Focusing on FRE-MRA, CTA Imaging Method

뇌혈관 질환에서 신호대 잡음비와 대조도대 잡음비를 이용한 정량적평가 : FRE-MRA, CTA 영상기법중심으로

  • Goo, Eun-Hoe (Department of Radiological Science, Cheongju University)
  • 구은회 (청주대학교 방사선학과)
  • Received : 2017.10.17
  • Accepted : 2017.11.30
  • Published : 2017.11.30

Abstract

In this study, data analysis has been conducted by INFINITT program to analyze the effect of signal to noise ratio(SNR) and contrast to noise ratio(CNR) of flow related enhancement(FRE) and computed tomography Angiography(CTA) on cerebrovascular diseases for qualitative evaluations. Based on the cerebrovascular image results achieved from 63 patients (January to April, 2017, at C University Hospital), we have selected 19 patients that performed both FRE-MRA and CTA. From the 19 patients, 2 were excluded due to artifacts from movements in the cerebrovascular image results. For the analysis conditions, we have set the 5 part (anterior cerebral artery, right and left Middle cerebral artery, right and left Posterior cerebral artery) as the interest area to evaluate the SNR and CNR, and the results were validated through Independence t Test. As a result, by averaging the SNR, and CNR values, the corresponding FRE-MRA achieved were: anterior cerebral artery ($1500.73{\pm}12.23/970.43{\pm}14.55$), right middle cerebral artery ($1470.16{\pm}11.46/919.44{\pm}13.29$), left middle cerebral artery ($1457.48{\pm}17.11/903.96{\pm}14.53$), right posterior cerebral artery ($1385.83{\pm}16.52/852.11{\pm}14.58$), left posterior cerebral artery ($1318.52{\pm}13.49/756.21{\pm}10.88$). by averaging the SNR, and CNR values, the corresponding CTA achieved were: anterior cerebral artery ($159.95{\pm}12.23/123.36{\pm}11.78$), right middle cerebral artery ($236.66{\pm}17.52/202.37{\pm}15.20$), left middle cerebral artery ($224.85{\pm}13.45/193.14{\pm}11.88$), right posterior cerebral artery ($183.65{\pm}13.47/151.44{\pm}11.48$), left posterior cerebral artery ($177.7{\pm}16.72/144.71{\pm}11.43$) (p < 0.05). In conclusion, MRA had high SNR and CNR value regardless of the cerebral infarction or cerebral hemorrhage observed in the 5 part of the brain. Although FRE-MRA consumed longer time, it proved to have less side effect of contrast media when compared to the CTA.

본 데이터 분석은 INFINITT 프로그램을 사용하여 유속증강 자기공명 혈관 조영술(FRE-MRA)과 전산화단층 촬영 혈관 조영술(CTA)에서 신호대 잡음비(SNR)와 대조도대 잡음비(CNR) 분석에 따른 뇌혈관 질환에 대한 정량적 평가를 하고자 하였다. 2017년 1월~4월까지 C대학병원에서 뇌혈관영상검사를 시행한 63명의 환자 중 FRE-MRA와 CTA를 동시에 시행한 19명의 뇌혈관 질환 환자영상 중 움직임으로 인한 인공물로 분석이 어려운 2명의 영상을 제외한 17명의 영상을 분석하였다. 분석 방법으로 FRE-MRA와 CTA에 대하여 각각 5 부위(앞대뇌동맥, 좌 우 중간대뇌동맥, 좌 우 뒤대뇌동맥)에 관심영역을 설정하고 SNR과 CNR를 평가하였고, 분석결과에 대한 유의성 평가는 독립 t 검정을 통하여 유의성을 확인하였다. 본 연구에 대한 결과로서 각각의 SNR과 CNR을 평균하였을 때 FRE-MRA는 앞대뇌동맥($1500.73{\pm}12.23/970.43{\pm}14.55$), 좌중간대뇌동맥($1470.16{\pm}11.46/919.44{\pm}13.29$), 우중간대뇌동맥($1457.48{\pm}17.11/903.96{\pm}14.53$), 좌뒤대뇌동맥($1385.83{\pm}16.52/852.11{\pm}14.58$), 우뒤대뇌동맥($1318.52{\pm}13.49/756.21{\pm}10.88$)의 값이 측정되었고, CTA는 각각 앞대뇌동맥($159.95{\pm}12.23/123.36{\pm}11.78$), 좌중간대뇌동맥($236.66{\pm}17.52/202.37{\pm}15.20$), 우중간대뇌동맥($224.85{\pm}13.45/193.14{\pm}11.88$), 좌뒤대뇌동맥($183.65{\pm}13.47/151.44{\pm}11.48$), 우뒤대뇌동맥($177.7{\pm}16.72/144.71{\pm}11.43$)의 값이 측정되었다(p<0.05). 결론적으로 5부위의 뇌혈관 질환 영상을 분석한 결과 뇌경색이나 뇌출혈과는 관계없이 MRA가 SNR과 CNR값이 높은 것으로 나타났다. 따라서 환자협조가 가능하여 검사시간이 길다는 단점만 극복할 수 있으면 CTA에 비해 조영제의 부작용으로부터 자유로운 FRE-MRA가 유용하였다.

Keywords

References

  1. M. A. Kim, "An Analysis of Nursing Diagnoses of Cerebrovascular Disease," Kyemyeong Nursing science, Vol. 4, No. 1, pp. 81-91, 2000.
  2. T. Sekine, R. Takagi, Y. Amano, Y. Murai, E. Orita, Y. Matsumura, S. Kumita, "4D flow MRI assessment of extracranial intracranial bypass: qualitative and quantitative evaluation of the hemodynamics," Neuroradiology, Vol. 58, No. 3, pp. 44-237, 2016.
  3. H. Y. Son, Y. K. Park, "Neuroprotective effect of modified Boyanghwano-Tang and the major medicinal plants, Astragali Radix and Salviae Miltiorrhizae Radix on ischemic stroke in rats," Korea Journal of Herbology, Vol. 25, No. 2, pp. 9-71, 2010.
  4. J. DeKeyser, "Thrombolytic therapy for acute is chemic stroke-summary statement, Report of the Quality Standards Subcommittee of the American Academy of Neurology", Neurology, Vol. 49, No. 3, pp. 900-901, 1997.
  5. J. H. Lee, T. S. Chung, K. Y. Lee, S. H. Suh, "Comparison of Non-invasive Imaging Studies in the Evaluation of Carotid Artery Stenosis and Occlusion : CT Angiography, Time-of-Flight MR Angiography and Contrast-Enhanced MR Angiography," Journal of the Korean Society of Magnetic Resonance in Medicine, Vol. 15, pp. 234-241, 2011. https://doi.org/10.13104/jksmrm.2011.15.3.234
  6. D. H. Kim, S. I. Choi, E. J Chun, S. A. Chang, E. K. Choi, H. J Chang, D. J. Choi, W. Lee, J. H. Park, "Coronary CT Angiography: Focus on a New Algorithm as Diagnostic Tool in Routine Clinical Practice," Journal of the Korean Radiology Society, Vol. 56, No. 5, pp. 461-472, 2007. https://doi.org/10.3348/jkrs.2007.56.5.461
  7. J. N. Hsiang , E. Y. Liang, J. M. Lam, X. L. Zhu, W. S. Poon, "The Role of Computed Tomographic Angiography in the Diagnosis of Intracranial Aneurysms and Emergent Aneurysm Clipping," Neurosurgery, Vol. 38, No. 3, pp. 481-487, 1996. https://doi.org/10.1227/00006123-199603000-00011
  8. Y. J. Choi, D. C. Kweon, "Evaluation of TOF MR Angiography and Imaging for the Half Scan Factor of Cerebral Artery," Journal of the Korean Magnetics Society, Vol. 26, No. 3, pp. 92-98, 2016. https://doi.org/10.4283/JKMS.2016.26.3.092
  9. R. Dashti , J. Hernesniemi, M. Niemela, J. Rinne, M. Lehecka, H. Shen, H. Lehto, B. S. Albayrak, A. Ronkainen, T. Koivisto, J. E. Jaaskelainen, "Microneurosurgical management of distal middle cerebral artery aneurysms," Surgical Neurology, Vol. 67, No. 6, pp. 553-563, 2007. https://doi.org/10.1016/j.surneu.2007.03.023
  10. B. J. Park, M. G. Kim, S. I. Suh, S. J. Hong, K. R. Cho, B. K. Seo, K. Y. Lee, N. J. Lee, J. H. Kim, "The Usefulness of Test Bolus Examination in Three Dimensional Contrast Enhanced MR Angiography of the Carotid Artery," Journal of the Korean Medical Science, Vol. 44, No. 3, pp. 317-323, 2001.
  11. S. Y. Son, Y. S. Kim, K. W. Choi, S. M. Seo, J. W. Min, B. G. Yoo, J. S. Lee, "A study of contrast agent peak time using biomechanics factors experimental contrast medium infusion test using at contrast enhanced magnetic resonance angiography," Journal of the Korea Academia-Industrial cooperation Society, Vol. 14, No. 2 pp. 786-792, 2013. https://doi.org/10.5762/KAIS.2013.14.2.786
  12. S. Y. Kim, Y. K. Kim, S. M. Yoon, K. H. Yoo, J. S. Lim, "Using Keyhole and SENSE Technique 4D(time-resolved) MRA," Korean Journal of Magnetic Resonance Technology, Vol. 18, pp. 244-252, 2005.
  13. Y. Lee, J. H. Choi, S. H. Park, S. S. Kim, S. T. Chung, "The 2D/3D Time-of-Flight, Phase Contrast and Contrast Enhanced Magnetic Resonance Angiography," The Institute of Electronics Engineers of Korea - System and Control, Vol. 40, No. 4, pp. 67-74, 2003.
  14. N. G. Jang, J. J. Seo, T. W. Jung, G. W. Kim, J. K. Kang, K. H. Cho, "The Usefulness of Enhanced 3D-TOF MR Angiography in the Patients with Cerebral Infarction: Comparison with Conventional Angiography," Korean Journal of Radiology, Vol. 42, No. 4, pp. 575-58, 2000. https://doi.org/10.3348/jkrs.2000.42.4.575
  15. L. S. Babiarz , J. M. Romero , E. K. Murphy, B. Brobeck, P. W. Schaefer , R. G. Gonzlez, R. G. Gonzalez and M. H. Lev, "Contrast-enhanced MR angiography is not more accurate than unenhanced 2D time-of-flight MR angiography for determining > or = 70% internal carotid artery stenosis," American Journal of Neuroradiology, Vol. 30, No. 4, pp. 761-768, 2009. https://doi.org/10.3174/ajnr.A1464
  16. J. Alvarez Linera, J. Benito-Len, J. Escribano, J. Campollo, R. Gesto, "Prospective evaluation of carotid artery stenosis: elliptic centric contrast-enhanced MR angiography and spiral CT angiography compared with digital subtraction angiography," American Journal of Neuroradiology, Vol. 24, No. 5, pp. 1012-1019, 2003.
  17. O. Naggara, E. Touze, N. Seiller, M. P. Gobin-Metteil, J. L. Mas, J. F. Meder, C. Oppenheim, "Asymmetry of intracranial internal carotid artery on 3D TOF MR angiography: a sign of unilateral extracranial stenosis," European Radiology, Vol. 18, No. 5, pp 1038-1042, 2008. https://doi.org/10.1007/s00330-007-0835-3
  18. D. Weishaupt, V. D. Kochli , B. Marincek, "How does MRI work?," Berlin: Springer, pp. 21-42, 2003.
  19. C. Westbrook, C. K. Roth, J. Talbot, "MRI in practice. 3rded," Blackwell publishing, pp. 61-103, 2005.
  20. J. Attali, A. Benaissa, S. Soize, K. Kadziolka, C. Portefaix, L. Pierot, "Follow-up of intracranial aneurysms treated by flow diverter: comparison of three-dimensional time-of-flight MR angiography (3D-TOF-MRA) and contrast-enhanced MR angiography (CE-MRA) sequences with digital subtraction angiography as the gold standard," Journal of NeuroInterventional Surgery, Vol. 8, No. 1, pp. 81-86, 2016. https://doi.org/10.1136/neurintsurg-2014-011449
  21. J. Attali , A. Benaissa, S. Soize, K. Kadziolka, C. Portefaix, L. Pierot, "Follow-up of intracranial aneurysms treated by flow diverter: comparison of three-dimensional time-of-flight MR angiography (3D-TOF-MRA) and contrast-enhanced MR angiography(CE-MRA) sequences with digital subtraction angiography as the gold standard," Journal of NeuroInterventional Surgery, Vol. 8, No. 1, pp. 81-86, 2016. https://doi.org/10.1136/neurintsurg-2014-011449