DOI QR코드

DOI QR Code

Evaluation of Cavity Wall Adaptation of Bulk-fill Resin Composites in Class II Cavities of Primary Molar

유구치 2급 와동에서 bulk-fill 복합레진의 와동적합성 평가

  • Bae, Youngeun (Department of Pediatric Dentistry, School of Dentistry, Pusan National University) ;
  • Shin, Jonghyun (Department of Pediatric Dentistry, School of Dentistry, Pusan National University) ;
  • Kim, Shin (Department of Pediatric Dentistry, School of Dentistry, Pusan National University) ;
  • Jeong, Taesung (Department of Pediatric Dentistry, School of Dentistry, Pusan National University) ;
  • Kim, Jiyeon (Department of Pediatric Dentistry, School of Dentistry, Pusan National University)
  • 배영은 (부산대학교 치의학전문대학원 소아치과학교실) ;
  • 신종현 (부산대학교 치의학전문대학원 소아치과학교실) ;
  • 김신 (부산대학교 치의학전문대학원 소아치과학교실) ;
  • 정태성 (부산대학교 치의학전문대학원 소아치과학교실) ;
  • 김지연 (부산대학교 치의학전문대학원 소아치과학교실)
  • Received : 2017.06.02
  • Accepted : 2017.07.17
  • Published : 2017.11.30

Abstract

Recently, there have been many studies on bulk-fill resin composites. However, studies on the proper materials for pediatric patients are rare. The aim of this study was to compare the cavity wall adaptation of bulk-fill resin composites with conventional resin composite in class II cavities of primary molars using microcomputed tomography (micro-CT). Standardized class II slot cavities were prepared in 80 exfoliated primary molars and randomly divided into 4 groups. The control group was restored with conventional resin composite, Filtek Z-350 XT (FZ), and the three groups were restored with bulk-fill resin composites, Filtek bulk-fill posterior (FB), Tetric N-Ceram Bulk Fill (TNC), Filtek bulk-fill flowable (FBF). All specimens were thermocycled and then immersed in 50% silver nitrate ($AgNO_3$) solution. Micro-CT was used to measure the penetration volume of the total silver nitrate and the degree of cervical marginal leakage and the number, size, and position of the voids were evaluated. The results revealed that the volume of silver nitrate were significantly different between FB and FZ (p < 0.05). The results also revealed that the penetration length of silver nitrate FBF showed statistically lower than the FZ and FB (p < 0.05). There was no significant difference between the groups in number and size of voids. In conventional resin composite, most of the voids were present inside the restoration (83.3%), but the voids in the bulk-fill resin composites incidence were higher in the gingivoaxial angle. The cavity wall adaptation demonstrated in class II restorations of primary molar by new bulk fill resin composites was similar to conventional incremental technique. Bulk-fill resin composites might be an clinical option for a faster restoration in deciduous teeth.

최근 개발된 bulk-fill 복합레진에 대한 연구가 많이 이루어지고 있지만 소아환자 치료에 사용할 수 있는 적절한 재료인지에 대한 연구는 부족한 실정이다. 따라서 본 연구의 목적은 유구치의 2급 와동에서 bulk-fill 복합레진과 전통적 복합레진의 와동 적합성을 비교 평가하는 것이다. 발치 된 80개의 유구치의 근심 또는 원심에 2급 와동을 형성한 후 4개의 군으로 무작위로 나누었다. 대조군은 전통적 복합레진인 Filtek$^{TM}$ Z-350 XT(FZ)으로 수복하고 나머지 3개의 군은 bulk-fill 복합레진인 Filtek$^{TM}$ Bulk Fill Posterior Restorative(FB), Tetric N-Ceram$^{(R)}$ BulkFill(TNC)과 Filtek$^{TM}$ Bulk Fill Flowable Restorative(FBF)으로 수복하였다. 모든 시편을 열순환 시행한 후 50% 질산은($AgNO_3$)용액에 침적시켰다. Micro-CT를 이용하여 전체 질산은의 침투 부피와 치경부의 변연누출 정도를 측정하였고 기포의 개수, 크기, 위치를 평가하였다. 질산은의 침투 부피에서 FB가 FZ보다 유의하게 낮은 값을 보였고(p < 0.05), TNC와 FBF는 FZ와 비슷한 값을 보였다. 치경부 부분의 변연누출 정도는 FBF가 FZ와 FB보다 유의하게 낮은 값을 보였다(p < 0.05). 기포의 개수와 크기는 4개 군 모두 유의한 차이가 없었으나 기포의 위치는 전통적 복합레진에서는 전체 기포의 83.3%가 수복물 내부에 분포하였고, bulk-fill 복합레진에서는 치은축면 선각에 많이 분포하였다. 유구치 2급 와동에서 bulk-fill 복합레진과 전통적 복합레진의 와동에 대한 적합성은 유사한 결과를 보여주었다. 따라서 소아의 치아우식증 수복치료 시 bulk-fill 복합레진이 유용하게 사용될 수 있을 것으로 보인다.

Keywords

References

  1. Bowen RL : Adhesive bonding of various materials to hard tooth tissues. III. Bonding to dentin improved by pretreatment and the use of surface-active comonomer. J Dent Res, 44:903-905, 1965. https://doi.org/10.1177/00220345650440052501
  2. Brannstrom M, Nyborg H : Pulpal reaction to composite resin restorations. J Prosthet Dent, 27:181-189, 1972. https://doi.org/10.1016/0022-3913(72)90196-5
  3. Davidson CL, Feilzer AJ : Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. J Dent, 25:435-440, 1997. https://doi.org/10.1016/S0300-5712(96)00063-2
  4. Versluis A, Douglas WH, Cross M, Sakaguchi RL : Does an incremental filling technique reduce polymerization shrinkage stresses?. J Dent Res, 75:871-878, 1996. https://doi.org/10.1177/00220345960750030301
  5. Winkler MM, Katona TR, Paydar NH : Finite element stress analysis of three filling techniques for class V light-cured composite restorations. J Dent Res, 75:1477-1483, 1996. https://doi.org/10.1177/00220345960750070701
  6. Bucuta S, Ilie N : Light transmittance and micro-mechanical properties of bulk fill vs. conventional resin based composites. Clin Oral Investig, 18:1991-2000, 2014. https://doi.org/10.1007/s00784-013-1177-y
  7. El-Damanhoury H, Platt J : Polymerization shrinkage stress kinetics and related properties of bulk-fill resin composites. Oper Dent, 39:374-382, 2014. https://doi.org/10.2341/13-017-L
  8. Flury S, Peutzfeldt A, Lussi A : Influence of increment thickness on microhardness and dentin bond strength of bulk fill resin composites. Dent Mater, 30:1104-1112, 2014. https://doi.org/10.1016/j.dental.2014.07.001
  9. Benetti AR, Havndrup-Pedersen C, Pallensen U, et al. : Bulkfill resin composites: polymerization contraction, depth of cure, and gap formation. Oper Dent, 40:190-200, 2015. https://doi.org/10.2341/13-324-L
  10. Moorthy A, Hogg CH, Fleming GJ, et al. : Cuspal deflection and microleakage in premolar teeth restored with bulkfill flowable resin-based composite base materials. J Dent, 40:500-505, 2012. https://doi.org/10.1016/j.jdent.2012.02.015
  11. Lee HB, Seo HW, Lee JH, Park HW : Evaluation of shear bond strength and microleakage of bulk-fill resin composites. J Korean Acad Pediatr Dent, 42:281-290, 2015. https://doi.org/10.5933/JKAPD.2015.42.4.281
  12. Eden E, Topaloglu-Ak A, Cuiipers V, Frencken JE : Micro-CT for measuring marginal leakage of Class II resin composite restorations in primary molars prepared in vivo. Am J Dent, 21:393-397, 2008.
  13. Ilie N, Schoner C, Bucher K, Hickel R : An in-vitro assessment of the shear bond strength of bulk-fill resin composites to permanent and deciduous teeth. J Dent, 42:850-855, 2014. https://doi.org/10.1016/j.jdent.2014.03.013
  14. Sun J, Eidelman N, Lin-Gibson S : 3D mapping of polymerization shrinkage using X-ray micro-computed tomography to predict microleakage. Dent Mater, 25:314-320, 2009. https://doi.org/10.1016/j.dental.2008.07.010
  15. Rengo C, Spagnuolo G, Ferrari M, et al. : Marginal leakage of bulk fill composites in Class II restorations: A microCT and digital microscope analysis. Int J Adhes Adhes, 60:123-129, 2015. https://doi.org/10.1016/j.ijadhadh.2015.04.007
  16. Majety KK, Pujar M : In vitro evaluation of microleakage of class II packable composite resin restorations using flowable composite and resin modified glass ionomers as intermediate layers. J Conserv Dent, 14:414-417, 2011. https://doi.org/10.4103/0972-0707.87215
  17. Schneider LF, Cavalcante LM, Silikas N : Shrinkage stresses generated during resin-composite applications: a review. J Dent Biomech, 1:1-14, 2010.
  18. M R, Sajjan GS, B N K, Mittal N : Effect of different placement techniques on marginal microleakage of deep class-II cavities restored with two composite resin formulations. J Conserv Dent, 13:9-15, 2010. https://doi.org/10.4103/0972-0707.62633
  19. Van Ende A, De Munck J, Van Meerbeek B, et al. : Bulkfilling of high C-factor posterior cavities: effect on adhesion to cavity-bottom dentin. Dent Mater, 29:269-277, 2013. https://doi.org/10.1016/j.dental.2012.11.002
  20. Jang JH, Park SH, Hwang IN : Polymerization shrinkage and depth of cure of bulk-fill resin composites and highly filled flowable resin. Oper Dent, 40:172-180, 2015. https://doi.org/10.2341/13-307-L
  21. Par M, Gamulin O, Tarle Z, et al. : Effect of temperature on post-cure polymerization of bulk-fill composites. J Dent, 42:1255-1260, 2014. https://doi.org/10.1016/j.jdent.2014.08.004
  22. Moszner N, Fischer UK, Rheinberger V, et al. : Benzoyl germanium derivatives as novel visible light photoinitiators for dental materials. Dent Mater, 24:901-907, 2008. https://doi.org/10.1016/j.dental.2007.11.004
  23. Gaintantzopoulou MD, Gopinath VK, Zinelis S : Evaluation of cavity wall adaptation of bulk esthetic materials to restore class II cavities in primary molars. Clin Oral Investig, 1063-1070, 2017.
  24. Poggio C, Chiesa M, Colombo M, et al. : Microleakage in Class II composite restorations with margins below the CEJ: In vitro evaluation of different restorative techniques. Med Oral Patol Oral Cir Bucal, 18:793-798, 2013.
  25. Swapna MU, Koshy S, Nainan MT, et al. : Comparing marginal microleakage of three bulk fill composites in Class II cavities using confocal microscope: An in vitro study. J Conserv Dent, 18:409-413, 2015. https://doi.org/10.4103/0972-0707.164058
  26. Dietrich T, Losche AC, Losche GM, Roulet JF : Marginal adaptation of direct composite and sandwich restroations in class II cavities with cervical margins in dentine. J Dent, 27:119-128, 1999. https://doi.org/10.1016/S0300-5712(98)00035-9
  27. Joseph A, Santhosh L, George R, et al. : Microleakage evaluation of Silorane-based composite and methacrylatebased composite in class II box preparations using two different layering techniques: An in vitro study. Indian J Dent Res, 24:148, 2013. https://doi.org/10.4103/0970-9290.114943
  28. Poskus LT, Placido E, Cardoso PE : Influence of adhesive system and placement technique on microleakage of resinbased composite restorations. J Adhes Dent, 62:227-232, 2004.
  29. Scotti N, Comba A, Berutti E, et al. : Microleakage at enamel and dentin margins with a bulk fills flowable resin. Eur J Dent, 8:1-8, 2014. https://doi.org/10.4103/1305-7456.126230
  30. Campos EA, Ardu S, Krejci I, et al. : Marginal adaptation of class II cavities restored with bulk-fill composites. J Dent, 42:575-581, 2014. https://doi.org/10.1016/j.jdent.2014.02.007
  31. Liu L, Zhang BM, Wang DF, Wu ZJ : Effects of cure cycles on void content and mechanical properties of composite laminates. Compos Struct, 73:303-309, 2006. https://doi.org/10.1016/j.compstruct.2005.02.001
  32. Nazari A, Sadr A, Sumi Y, et al. : 3D assessment of void and gap formation in flowable resin composites using optical coherence tomography. J Adhes Dent, 15:237-243, 2013.