DOI QR코드

DOI QR Code

A comprehensive study on active Lamb wave-based damage identification for plate-type structures

  • Wang, Zijian (Department of Dam Safety Management, Nanjing Hydraulic Research Institute) ;
  • Qiao, Pizhong (Department of Civil and Environmental Engineering and Composite Materials and Engineering Center, Washington State University) ;
  • Shi, Binkai (School of Mechanics and Materials, Hohai University)
  • Received : 2016.12.21
  • Accepted : 2017.08.22
  • Published : 2017.12.25

Abstract

Wear and aging associated damage is a severe problem for safety and maintenance of engineering structures. To acquire structural operational state and provide warning about different types of damage, research on damage identification has gained increasing popularity in recent years. Among various damage identification methods, the Lamb wave-based methods have shown promising suitability and potential for damage identification of plate-type structures. In this paper, a comprehensive study was presented to elaborate four remarkable aspects regarding the Lamb wave-based damage identification method for plate-type structures, including wave velocity, signal denoising, image reconstruction, and sensor layout. Conclusions and path forward were summarized and classified serving as a starting point for research and application in this area.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Ambrozinski, L. and Stepinski, T. (2017), "Robust polarization filter for separation of Lamb wave modes acquired using a 3D laser vibrometer", Mech. Syst. Signal Pr., 93, 368-378. https://doi.org/10.1016/j.ymssp.2017.02.002
  2. Aryan, P., Kotousov, A., Ng, C.T. and Cazzolato, B.S. (2017), "A baseline-free and non-contact method for detection and imaging of structural damage using 3D laser vibrometry", Struct. Control Health Monit.,24(4), e1894. https://doi.org/10.1002/stc.1894
  3. Birgani, P.T., Sodagar, S. and Shishesaz, M. (2017), "Generation of low-attenuation Lamb wave modes in three-layer adhesive joints", Int. J. Acoust. Vib., 22(1), 51-57.
  4. Bonnel, J., Caporale, S. and Thode, A. (2017), "Waveguide mode amplitude estimation using warping and phase compensation", J. Acoust. Soc. Am., 141(3), 2243-2255. https://doi.org/10.1121/1.4979057
  5. Cai, J., Shi, L., Yuan, S. and Shao, Z. (2011), "High spatial resolution imaging for structural health monitoring based on virtual time reversal", Smart Mater. Struct., 20(5).
  6. Cai, J., Yuan, S.F. and Wang, T.G. (2017), "Signal construction-based dispersion compensation of Lamb waves considering signal waveform and amplitude spectrum preservation", Materials, 10(1), 22. https://doi.org/10.3390/ma10010022
  7. Chen, J., Yuan, S.F., Qiu, L., Cai, J. and Yang, W.B. (2016), "Research on a Lamb wave and particle filter-based on-line crack propagation prognosis method", Sensors, 16(3), 21.
  8. De Marchi, L., Marzani, A., Moll, J., Kudela, P., Radzienski, M. and Ostachowicz, W. (2017), "A pulse coding and decoding strategy to perform Lamb wave inspections using simultaneously multiple actuators",Mech. Syst. Signal Pr., 91, 111-121. https://doi.org/10.1016/j.ymssp.2016.12.014
  9. Fan, W. and Qiao, P. (2011), "Vibration-based damage identification methods: a review and comparative study", Struct. Health Monit., 10(1), 83-111. https://doi.org/10.1177/1475921710365419
  10. Farrar, C.R. and Worden, K. (2007), "An introduction to structural health monitoring, Philosophical Transactions of the Royal Society A: Mathematical", Phys. Eng. Sci., 365, 303-315. https://doi.org/10.1098/rsta.2006.1928
  11. Fei, Y., Roger, R. and Joseph, R. (2010), "Ultrasonic guided wave imaging techniques in structural health monitoring", J. Intel. Mat. Syst. Str., 21(3), 377-384. https://doi.org/10.1177/1045389X09356026
  12. Gauthier, C., El-Kettani, M., Galy, J., Predoi, M., Leduc, D. and Izbicki, J. (2017), "Lamb waves characterization of adhesion levels in aluminum/epoxy bi-layers with different cohesive and adhesive properties",Int. J. Adhesion and Adhesives, 74, 15-20. https://doi.org/10.1016/j.ijadhadh.2016.12.002
  13. Guan, R., Lu, Y., Duan, W. and Wang, X. (2017), "Guided waves for damage identification in pipeline structures: A review", Struct. Control Health Monit., 24(11).
  14. Hennings, B. and Lammering, R. (2016), "Material modeling for the simulation of quasi-continuous mode conversion during Lamb wave propagation in CFRP-layers", Compos. Struct., 151, 142-148. https://doi.org/10.1016/j.compstruct.2016.02.051
  15. Ihn, J.B. and Chang, F.K. (2008), "Pitch-catch active sensing methods in structural health monitoring for aircraft structures", Struct. Health Monit., 7(1), 5-19. https://doi.org/10.1177/1475921707081979
  16. Kabir, M.A. and Shahnaz, C. (2012), "Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains", Biomed. Signal Process. Control, 7(5), 481-489. https://doi.org/10.1016/j.bspc.2011.11.003
  17. Malinowski, P., Wandowski, T. and Ostachowicz, W. (2011), "Damage detection potential of a triangular piezoelectric configuration", Mech. Syst. Signal Pr., 25(7), 2722-2732. https://doi.org/10.1016/j.ymssp.2011.02.010
  18. Masserey, B. and Fromme, P. (2017), "Analysis of high frequency guided wave scattering at a fastener hole with a view to fatigue crack detection", Ultrasonics, 76, 78-86. https://doi.org/10.1016/j.ultras.2016.12.015
  19. Masurkar, F.A. and Yelve, N.P. (2017), "Optimizing location of damage within an enclosed area defined by an algorithm based on the Lamb wave response data", Appl. Acoust., 120, 98-110. https://doi.org/10.1016/j.apacoust.2017.01.014
  20. Miller, C.A. and Hinders, M.K. (2014), "Classification of flaw severity using pattern recognition for guided wave-based structural health monitoring", Ultrasonics, 54(1), 247-258. https://doi.org/10.1016/j.ultras.2013.04.020
  21. Minato, S. and Ghose, R. (2017), "Low-frequency guided waves in a fluid-filled borehole: simultaneous effects of generation and scattering due to multiple fractures", J. Appl. Phys., 121 (10).
  22. Mitra, M. and Gopalakrishnan, S. (2016), "Guided wave based structural health monitoring: A review", Smart Mater. Struct., 25 (5).
  23. Muller, A., Robertson, B., Gaydecki, P., Gresil, M. and Soutis, C. (2017), "Structural health monitoring using Lamb wave reflections and total focusing method for image reconstruction", Appl. Compos. Mater.,24(2), 553-573. https://doi.org/10.1007/s10443-016-9549-5
  24. Ostachowicz, W., Kudela, P., Malinowski, P. and Wandowski, T. (2009), "Damage localisation in plate-like structures based on PZT sensors", Mech. Syst. Signal Pr., 23(6), 1805-1829. https://doi.org/10.1016/j.ymssp.2008.10.011
  25. Padiyar, J.M. and Balasubramaniam, K. (2014), "Lamb-wave-based structural health monitoring technique for inaccessible regions in complex composite structures", Struct. Control Health Monit., 21(5), 817-832. https://doi.org/10.1002/stc.1603
  26. Pant, S., Laliberte, J., Martinez, M. and Rocha, B. (2014), "Derivation and experimental validation of Lamb wave equations for an n-layered anisotropic composite laminate", Compos. Struct., 111, 566-579. https://doi.org/10.1016/j.compstruct.2014.01.034
  27. Poddar, B. and Giurgiutiu, V. (2016), "Scattering of Lamb waves from a discontinuity: an improved analytical approach", Wave Motion, 65, 79-91. https://doi.org/10.1016/j.wavemoti.2016.03.009
  28. Ratassepp, M., Fan, Z. and Lasn, K. (2016), "Wave mode extraction from multimodal wave signals in an orthotropic composite plate", Ultrasonics, 71, 223-230. https://doi.org/10.1016/j.ultras.2016.06.021
  29. Salmanpour, M.S., Khodaei, S. and Aliabadi, H. (2017), "Transducer placement optimisation scheme for a delay and sum damage detection algorithm", Struct. Control Health Monit., 24(4).
  30. Sause, M.G.R., Hamstad, M.A. and Horn, S. (2013), "Finite element modeling of Lamb wave propagation in anisotropic hybrid materials", Composites Part B: Eng., 53, 249-257. https://doi.org/10.1016/j.compositesb.2013.04.067
  31. Sharma, S. and Mukherjee, A. (2015), "Ultrasonic guided waves for monitoring corrosion in submerged plates", Struct. Control Health Monit., 22(1), 19-35. https://doi.org/10.1002/stc.1657
  32. Su, Z., Ye, L. and Lu, Y. (2006), "Guided Lamb waves for identification of damage in composite structures: a review", J. Sound Vib., 295(3-5), 753-780. https://doi.org/10.1016/j.jsv.2006.01.020
  33. Tao, C., Ji, H., Qiu, J., Zhang, C., Wang, Z. and Yao, W. (2017), "Characterization of fatigue damages in composite laminates using Lamb wave velocity and prediction of residual life", Compos. Struct., 166, 219-228. https://doi.org/10.1016/j.compstruct.2017.01.034
  34. Verona, E., Anisimkin, V.I., Osipenko, V.A. and Voronova, N.V. (2017), "Quasi longitudinal Lamb acoustic modes along ZnO/Si/ZnO structures", Ultrasonics, 76, 227-233. https://doi.org/10.1016/j.ultras.2017.01.013
  35. Wang, C.H., Rose, J.T. and Chang, F.K. (2004), "A synthetic time-reversal imaging method for structural health monitoring", Smart Mater. Struct., 13(2), 415-423. https://doi.org/10.1088/0964-1726/13/2/020
  36. Wang, L. and Yuan, F.G. (2007), "Group velocity and characteristic wave curves of Lamb waves in composites: modeling and experiments", Compos. Sci. Technol., 67(7-8), 1370-1384. https://doi.org/10.1016/j.compscitech.2006.09.023
  37. Wang, Q., Hong, M. and Su, Z. (2016), "A sparse sensor network topologized for cylindrical wave-based identification of damage in pipeline structures", Smart Mater. Struct., 25(7).
  38. Wang, Z. and Qiao, P. (2017), "Backward wave separation method in a single transmitter and multi-receiver sensor array for improved damage identification of two-dimensional structures", Int. J. Damage Mech.,26(2), 229-250. https://doi.org/10.1177/1056789517694477
  39. Wang, Z., Qiao, P. and Shi, B. (2016), "Application of soft-thresholding on the decomposed Lamb wave signals for damage detection of plate-like structures", Measurement, 88, 417-427. https://doi.org/10.1016/j.measurement.2015.10.001
  40. Yang, B., Xuan, F., Chen, S., Zhou, S., Gao, Y. and Xiao, B. (2017), "Damage localization and identification in WGF/epoxy composite laminates by using Lamb waves: experiment and simulation", Compos.Struct., 165, 138-147. https://doi.org/10.1016/j.compstruct.2017.01.015
  41. Yang, L. and Ume, I.C. (2017), "Measurement of weld penetration depths in thin structures using transmission coefficients of laser-generated Lamb waves and neural network", Ultrasonics, 78, 96-109. https://doi.org/10.1016/j.ultras.2017.02.019
  42. Yang, Y., Peng, Z., Zhang, W., Meng, G. and Lang, Z. (2016), "Dispersion analysis for broadband guided wave using generalized warblet transform", J. Sound Vib., 367, 22-36. https://doi.org/10.1016/j.jsv.2015.12.037
  43. Yu, L. and Giurgiutiu, V. (2008), "In situ 2-D piezoelectric wafer active sensors arrays for guided wave damage detection", Ultrasonics, 48(2), 117-134. https://doi.org/10.1016/j.ultras.2007.10.008
  44. Yu, X., Ratassepp, M. and Fan, Z. (2017), "Damage detection in quasi-isotropic composite bends using ultrasonic feature guided waves", Compos. Sci. Technol., 141, 120-129. https://doi.org/10.1016/j.compscitech.2017.01.011
  45. Zeng, L., Lin, J. and Huang, L. (2017), "A modified Lamb wave time-reversal method for health monitoring of composite structures", Sensors, 17(5).
  46. Zeng, L., Lin, J., Bao, J., Joseph, P. and Huang, L. (2017), "Spatial resolution improvement for Lamb wave-based damage detection using frequency dependency compensation", J. Sound Vib., 394, 130-145. https://doi.org/10.1016/j.jsv.2017.01.031
  47. Zhang, G., Gao, W., Song, G. and Song, Y. (2017), "An imaging algorithm for damage detection with dispersion compensation using piezoceramic induced lamb waves", Smart Mater. Struct., 26(2).
  48. Zhao, Y., Li, F., Cao, P., Liu, Y., Zhang, J., Fu, S., Zhang, J. and Hu, N. (2017), "Generation mechanism of nonlinear ultrasonic Lamb waves in thin plates with randomly distributed micro-cracks", Ultrasonics, 79, 60-67. https://doi.org/10.1016/j.ultras.2017.04.004
  49. Zhu, K., Qiang, X. and Liu, B. (2017), "A reverberation-ray matrix method for guided wave-based non-destructive evaluation", Ultrasonics, 77, 79-87. https://doi.org/10.1016/j.ultras.2017.01.020
  50. Zou, D.J., Liu, T., Liang, C., Huang, Y., Zhang, F. and Du, C. (2015), "An experimental investigation on the health monitoring of concrete structures using piezoelectric transducers at various environmental temperatures", J. Intel. Mat. Syst. Str., 26(8), 1028-1034. https://doi.org/10.1177/1045389X14566525