Acknowledgement
Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)
References
- Alipour, A., kadkhodaei, M. and Safaei, M. (2017), "Design, analysis, and manufacture of a tension-compression self-centering damper based on energy dissipation of pre-stretched superelastic shape memory alloy wires", J. Intel. Mat. Syst. Str., 28(15), 2129-2139. https://doi.org/10.1177/1045389X16682839
- Attanasi, G. and Auricchio, F. (2011), "Innovative superelastic isolation device", J. Earthq. Eng., 15(1), 72-89. https://doi.org/10.1080/13632469.2011.562406
- Bhuiyan, A.R. and Alam, M.S. (2013), "Seismic performance assessment of highway bridges equipped with superelastic shape memory alloy-based laminated rubber isolation bearing", Eng. Struct., 49, 396-407. https://doi.org/10.1016/j.engstruct.2012.11.022
- Choi, E., Lee, H.P., Kim, S.I. and Kim, L.H. (2006), "Variation of natural frequency and dynamic behavior of railway open-steel-plate-girder bridge with installing disk bearings", J. Korean Soc. Steel Struct.,18(4), 437-446.
- Choi, E., Youn, H., Park, K. and Jeon, J.S. (2017), "Vibration tests of precompressed rubber springs and a flag-shaped smart damper", Eng. Struct., 132, 372-382. https://doi.org/10.1016/j.engstruct.2016.11.050
- Desfuli, H.F. and Alam, M.S. (2013), "Multi-criteria optimization and seismic performance assessment of carbon FRP-based elastomeric isolator", Eng. Struct., 49, 525-540. https://doi.org/10.1016/j.engstruct.2012.10.028
- Dhar, S., Das, S. and Saha, P. (2015), "State of art review of shape memory alloy used in civil structures as seismic control device", Int. J. Res. Technol., 4(13), 195-203.
- Dolce, M., Cardone, D. and Marnetto, R. (2000), "Implementation and testing of passive control devices based on shape memory alloys", Earthq. Eng. Struct. D., 29, 945-968. https://doi.org/10.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-#
- Dolce, M., Cardone, D., Ponzo, F.C. and Valente, C. (2005), "Shaking table tests on reinforced concrete frames without and with passive control systems", Earthq. Eng. Struct. D., 34, 1687-1717. https://doi.org/10.1002/eqe.501
- Fang, C., Yam, M., Lam, A. and Zhang, Y. (2015), "Feasibility study of shape memory alloy ring spring systems for self-centering seismic resisting devices", Smart Mater. Struct., 24, 075024. https://doi.org/10.1088/0964-1726/24/7/075024
- Gao, N., Jeon, J.S., Hodgson, D. and DesRoches, R. (2016), "An innovative seismic bracing system based on a superelastic shape memory alloy ring", Smart Mater. Struct., 25, 055030. https://doi.org/10.1088/0964-1726/25/5/055030
- Hwang, J.S., Wu, J.D., Pan, T.C. and Yang, A. (2002), "A mathematical hystertic model for elatomeric isolation bearings", Earthq. Eng. Struct. D., 31, 771-789. https://doi.org/10.1002/eqe.120
- Jeong, K., Choi, E., Back, Y.S. and Kang, J.W. (2016), "Smart damper using sliding friction of Aramid brake lining and self-centering of rubber springs", Int. J. Steel Struct., 16(4), 1239-1250. https://doi.org/10.1007/s13296-016-0065-0
- Kan, Q., Yu, C., Kang, G., Li, J. and Yan, W. (2016), "Experimental observation on rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy", Mech. Mater., 97, 48-58. https://doi.org/10.1016/j.mechmat.2016.02.011
- Kikuchi, M. and Aiken, I.D. (1997), "An analytical hysteresis model for elastomeric seismic isolation bearings", Earthq. Eng. Struct. D., 26, 215-231. https://doi.org/10.1002/(SICI)1096-9845(199702)26:2<215::AID-EQE640>3.0.CO;2-9
- Kim, C.W., Kawatani, M. and Hwang, W.S. (2004), "Reduction of traffic-induced vibration of two-girder steel bridge seated on elastomeric bearings", Eng. Struct., 26, 2185-2195. https://doi.org/10.1016/j.engstruct.2004.08.002
- Koblar, D., Skofic, J. and Boltezar, M. (2014), "Evaluation of the Young's modulus of rubber-like materials bonded to rigid surfaces with respect to poisson's ratio", J. Mech. Eng., 60(7-8); 508-511.
- Oh, S.W., Choi, E. and Jung, H.Y. (2005), "The estimated stiffness of rubber pads for railway bridges", J. Korean Soc. Steel Struct., 17(3), 370-316.
- Oh, S.W., Choi, E., Young, J.H. and Kim, H.S. (2006), "Static and dynamic behavior of disk bearings under railway vehicle loading", J. Korean Soc. Steel Struct., 18(4), 469-480.
- Ozbulut, O.E. and Hurlebasu, S. (2011), "Recentering variable friction device for vibration control of structure subjected to near-field earthquakes", Mech. Syst. Signal Pr., 25, 2849-2862. https://doi.org/10.1016/j.ymssp.2011.04.017
- Pauletta, M., Cortesia, A. and Russo, G. (2015), "Roll-out instability of small size fiber-reinforced elastomeric isolators in unbonded applications", Eng. Struct., 102, 358-368. https://doi.org/10.1016/j.engstruct.2015.08.019
- Qi, H.J. and Boyce, M.C. (2005), "Stress-strain behavior of thermoplastic polyurethane", Mech. Mater. , 37, 817-839. https://doi.org/10.1016/j.mechmat.2004.08.001
- Qiu, C. and Zhu, S. (2017), "Shake table test and numerical study of self-centering steel frame with SMA braces", Earthq. Eng. Struct. D., 46, 117-137. https://doi.org/10.1002/eqe.2777
- Reedlunn, B., Daly, S. and Shaw, J. (2013), "Superelastic shape memory alloy cables: Part I - Isothermal tension experiments", Int. J. Solids Struct., 50, 3009-3026. https://doi.org/10.1016/j.ijsolstr.2013.03.013
- Soul, H. and Yanwy, A. (2015), "Self-centering and damping capabilities of a tension-compression device equipped with superelastic NiTi wires", Smart Mater. Struct., 24, 075005. https://doi.org/10.1088/0964-1726/24/7/075005
- Strauss, A., Apostolidi, E., Zimmermann, T., Gerhaher, U. and Dritsos, S. (2014), "Experimental investigation of fiber and steel reinforced elastomeric bearings: Shear modulus and damping coefficient", Eng.Struct., 75, 402-413. https://doi.org/10.1016/j.engstruct.2014.06.008
Cited by
- Experimental Study on the Behavior of Polyurethane Springs for Compression Members vol.11, pp.21, 2021, https://doi.org/10.3390/app112110223