DOI QR코드

DOI QR Code

가압 DTF를 이용한 석탄 촤-CO2 가스화 반응상수 도출

Deriving the Rate Constants of Coal Char-CO2 Gasification using Pressurized Drop Tube Furnace

  • 손근 (성균관대학교 기계공학부) ;
  • 예인수 (성균관대학교 기계공학부) ;
  • 라호원 (한국에너지기술연구원 청정연료연구실) ;
  • 윤성민 (한국에너지기술연구원 청정연료연구실) ;
  • 류창국 (성균관대학교 기계공학부)
  • Sohn, Geun (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Ye, Insoo (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Ra, Howon (Clean Fuel Department, Korea Institute of Energy Reasearch) ;
  • Yoon, Sungmin (Clean Fuel Department, Korea Institute of Energy Reasearch) ;
  • Ryu, Changkook (School of Mechanical Engineering, Sungkyunkwan University)
  • 투고 : 2016.11.21
  • 심사 : 2017.11.22
  • 발행 : 2017.12.30

초록

This study investigates the gasification of coal char by $CO_2$ under high pressures in a drop tube furnace(DTF). The rate constants are derived for the shrinking core model using the conventional method based on the set reactor conditions. The computational fluid dynamic(CFD) simulations adopting the rate constants revealed that the carbon conversion was much slower than the experimental results, especially under high temperature and high partial pressure of reactants. Three reasons were identified for the discrepancy: i) shorter reaction time because of the entry region for heating, ii) lower particle temperature by the endothermic reaction, and iii) lower partial pressure of $CO_2$ by its consumption. Therefore, the rate constants were corrected based on the actual reaction conditions of the char. The CFD results updated using the corrected rate constants well matched with the measured values. Such correction of reaction conditions in a DTF is essential in deriving rate constants for any char conversion models by $H_2O$ and $O_2$ as well as $CO_2$.

키워드

참고문헌

  1. D. Heguy, V. Rai, Technology Development and Learning: Coal Gasification in China and the United States, J. The Electricity, 27(6) (2014) 69-85. https://doi.org/10.1016/j.tej.2014.06.003
  2. D.S. Kim, Construction and operation status of 300MW IGCC Plant in korea western power CO., J. of Electrical World, 11 (2013) 42-47.
  3. S.H. Kim, D.J. Go, Synthetic natural gas(SNG) manufacturing technology, News & Information for Chemical Engineers, 31(1) (2013) 65-68.
  4. H.J. Kim, H. Jung, H.T. Lee, D.H. Cheon, C.G. Lee, J.G. Lee, The Status and Prospect of Technical Development of CTL(Coal-to-Liquid) in Korea, The Korean Society for New and Renewable Energy, 2007, 461.
  5. G.M. Kim, J.H. Kim, K.Y. Lisandy, R.G. Kim, G.B. Kim, C.H. Jeon, Impact of Internal/External Diffusion on Gasification Reaction Rate Analysis of Coal Char in High Temperatures and Elevated pressures, J. Korean Soc. Combust., 21(4) (2016) 23-29. https://doi.org/10.15231/jksc.2016.21.4.023
  6. C. Higman, M. van der Birgt, Gasification, 2e, Elsevier, 2008.
  7. S.Y. Kim, B.H. Lee, H. Lim, D.Y. Yu, J.H. Song, C.H. Jeon, A Study on the Characteristics of Char Gasification for Three Different Sub-bituminous Coals in Drop Tube Furnace, 43th KOSCO Symposium, 2011, 193-198.
  8. K.Y. Lisandy, R.G. Kim, C.W. Hwang, C.H. Jeon, Reaction Rate Analysis of $CO_2 Gasification for Indonesian Coal Char at High Temperature and Elevated Pressure, Trans. Korean Soc. Mech. Eng. B, 38(9) (2014) 781-787. https://doi.org/10.3795/KSME-B.2014.38.9.781
  9. D.H. Ahn, B.M. Gibbs, K.H. Ko, J.J. Kim, Gasification kinetics of an Indonesian sub-bituminous coal-char with CO2 at elevated pressure, Fuel, 80 (2001) 1651-1658. https://doi.org/10.1016/S0016-2361(01)00024-2
  10. S. Kajitani, Gasification rate analysis of coal char with a pressurized drop tube furnace, Fuel, 81(5) (2002) 539-546. https://doi.org/10.1016/S0016-2361(01)00149-1
  11. J. Ballester, S. Jimenez, Kinetic parameters for the oxidation of pulversied coal as measured from drop tube tests, Combus. Flame., 142 (2005) 210-222. https://doi.org/10.1016/j.combustflame.2005.03.007
  12. S. Kajitani, N. Suzuki, M. Ashizawa, S. Hara, $CO_2 gasification rate analysis of coal char in entrained flow coal gasifier, Fuel, 85(2) (2006) 163-169. https://doi.org/10.1016/j.fuel.2005.07.024
  13. L. Kelebopile, R. Sun, H. Wang, X. Zhang, S. Wu, Pore development and combustion behavior of gasified semi-char in a drop tube furnace, Fuel Processing Technology, 111 (2013) 42-54. https://doi.org/10.1016/j.fuproc.2013.01.017
  14. L. Ding, Z. Zhou, W. Huo, G. Yu, Comparison of steam-gasification characteristics of coal char and petroleum coke char in drop tube furnace, Chinese J. Chemical Engineering, 23 (2015) 1214-1224. https://doi.org/10.1016/j.cjche.2014.11.032
  15. C.Y. Li, S. Appari, L.X. Zhang, A. N. Huang, H. P. Kuo, S. Kudo, J. I. Hayashi, K. Norinaga, Modeling of gas/particle flow in coal conversion with a drop tube reactor using a lumped kinetic model accounting volatiles-char interaction, Fuel Processing Technology, 138 (2015) 588-594. https://doi.org/10.1016/j.fuproc.2015.06.043
  16. S.M. Yoon, H.W. Ra, M.W. Seo, T.Y. Moon, S.J. Yun, J.H. Kim, Y.G. Kim, S.K. Park, J.G. Lee, Gasification Rate of Char Using a Pressurized Drop Tube Reactor, The Korean Society for New and Renewable Energy, 2015, 47-47.
  17. M. Grabner, Industrial Coal Gasification Technologies Covering Baseline and High-Ash Coal, WILEY-VCH, 2015, 59-65
  18. ANSYS FLUENT 12.1 User Guide, Canonsburg, 2009.
  19. T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu, A new k-${\varepsilon}$ eddy-viscosity model for high Reynolds number turbulent flows - model development and validation, Computers & Fluids, 24(3) (1995) 227-238. https://doi.org/10.1016/0045-7930(94)00032-T
  20. R. Siegel, J.R. Howell, Thermal radiation heat transfer 3rded., Washington, DC:Hemisphere, 1992.
  21. T.F. Smith, Z.F. Shen, J. N. Friedman, Evaluation of coefficients for the weighted sum of gray gases model, J. Heat Transfer, (1982) 602-608.
  22. B. Metis, ERG. Eckert, Forced, mixed and free convection regimes, J. Heat Transfer, 86(2) (1964) 295-296. https://doi.org/10.1115/1.3687128
  23. A. Behzadmehr A, N. Galanis, A. Laneville, Low Reynolds number mixed convection in vertical tubes with uniform wall heat flux, Int. J. Heat Mass Transfer, 46(25) (2013) 4823-4833. https://doi.org/10.1016/S0017-9310(03)00323-5
  24. S. Kakac, Y. Yenser, A. Pramuanjaroenkij, Convective heat transfer, United States: CRC press, (2013) 355-368.
  25. ELI. Ruckenstein, RAJ. Rajagopalan, A simple algebraic method for obtaining the heat or mass transfer coefficients under mixed convection, Chem Eng Commun, 4(1-3) (1980) 15-39. https://doi.org/10.1080/00986448008935887