DOI QR코드

DOI QR Code

Scaling Up Fabrication of UO2 Porous Pellet With a Simulated Spent Fuel Composition

모의 사용후핵연료 조성의 UO2 다공성펠렛 제조 스케일 업

  • Received : 2017.02.06
  • Accepted : 2017.12.18
  • Published : 2017.12.30

Abstract

Processing and equipment were tailored for engineering scale fabrication of $UO_2$ porous pellets, a feed material for the electrolytic reduction process in the PRIDE (PyRoprocessing Integrated DEmonstration) facility at KAERI (Korea Atomic Energy Research Institute). The starting materials, $UO_2$ powder and pre-milled surrogate oxide powders, were proportioned to simulate the chemical composition of spent fuel (so-called Simfuel). The Simfuel powders were homogenized by mixing, compacted into a pellet shape, and finally heat treated using a tumbling mixer, rotary press, and sintering furnace. After sintering at $1450^{\circ}C$ for 24 h in $4%\;H_2-Ar$, the average bulk density of the $UO_2$ Simfuel pellets was $6.89g{\cdot}cm^{-3}$, which meets the standard of the following electrolytic reduction process. In addition, the results of a microstructural analysis demonstrated that the sintered Simfuel $UO_2$ porous pellets accurately simulate the properties of spent fuel in terms of the formation of second phases. These results provide essential information for the massive fabrication of $UO_2$ porous pellets for engineering scale pyroprocessing research.

KAERI의 PRIDE 시설에서 공학규모의 전해환원용 원료물질인 $UO_2$ 다공성펠렛 제조를 위해 공정과 장치를 최적화시킨 내용을 다루었다. $UO_2$ 분말과 별도로 attrition 밀링된 대용산화물 분말을 출발분말로, 정밀 칭량을 통해 사용후핵연료 조성을 모사하였다(Simfuel). Simfuel 분말은 각각 tumbling mixer로 혼합하여 균질화 하고, rotary press로 성형하여 furnace를 이용해 소결하였다. $4%\;H_2-Ar$ 분위기에서 $1450^{\circ}C$ 24시간 고온 열처리하여 제조된 소결펠렛은 $6.89g{\cdot}cm^{-3}$의 벌크밀도를 가지며 이는 후속 전해환원 공정의 요구에 부합한다. 소결된 다공성펠렛의 미세구조 관찰을 통해 다공성 기지상과 함께 산화/금속 석출물이 관찰되어 사용후핵연료의 상이 모사됨을 확인하였다. 본 결과는 향후 공학규모 이상의 파이로 연구를 위한 $UO_2$ 다공성펠렛 제조에 중요한 기초자료로 활용 될 것이다.

Keywords

References

  1. K.C. Song, H. Lee, J.M. Hur, J.G. Kim, D.H. Ahn, and Y.Z. Cho, "Status of Pyroprocessing Technology Development in Korea", Nucl. Eng. Technol., 42(2), 131-144 (2010). https://doi.org/10.5516/NET.2010.42.2.131
  2. J.H. Yoo, C.S. Seo, E.H. Kim, and H.S. Lee, "A Conceptual Study of Pyroprocessing for Recovering Actinides from Spent Oxide Fuels", Nucl. Eng. Technol., 40, 581-592 (2008). https://doi.org/10.5516/NET.2008.40.7.581
  3. H. Lee, G.I. Park, K.H. Kang, J.M. Hur, J.G. Kim, D.H. Ahn, Y.Z. Cho, and E.H. Kim, "Pyroprocessing Technology Development at KAERI", Nucl. Eng. Technol., 43(4), 317-328 (2011). https://doi.org/10.5516/NET.2011.43.4.317
  4. E.Y. Choi, J.K. Kim, H.S. Im, I.K. Choi, S.H. Na, J.W. Lee, S.M. Jeong, and J.M. Hur, "Effect of the UO2 Form on the Electrochemical Reduction Rate in a LiCl-Li2O Molten Salt", J. Nucl. Mater., 437, 178-187 (2013). https://doi.org/10.1016/j.jnucmat.2013.01.306
  5. S.D. Herrmann, S.X. Li, D.A. Sell, and B.R. Westphal, "Electrolytic Reduction of Spent Nuclear Oxide Fuel - Effects of Fuel Form and Cathode Containment Materials on Bench-scale Operations", Proc. of Int. Conf. on Future Nucl. Systems, Global 2007, 758-762, Boise (2007).
  6. Y. Sakamura and T. Omori, "Electrolytic Reduction and Electrorefining of Uranium to Develop Pyrochemical Reprocessing of Oxide Fuels", Nucl. Techno., 171(3), 266-275 (2010) https://doi.org/10.13182/NT10-A10861
  7. Y. Sakamura, "Effect of Alkali and Alkaline-Earth Chloride Addition on Electrolytic Reduction of UO2 in LiCl Salt Bath", J. Nucl. Mater. 412, 177-183 (2011). https://doi.org/10.1016/j.jnucmat.2011.02.055
  8. G. Uchiyama, M. Kitamura, K. Yamazaki, S. Torakai, S. Sugikawa, M. Maeda, and T. Tsujino, "Study on Voloxidation Process for Tritium Control in Reprocessing", Radioact. Waste Manage. Nucl. Fuel Cycle, 17, 63-79 (1992).
  9. J.J. Park, J.M. Shin, G.I. Park, J.W. Lee, and K.C. Song, "An Advanced Voloxidation Process at KAERI", Proc. of Int. Conf. on Future Nucl. Systems, Global 2009, 9161, Paris (2009).
  10. E.Y. Choi, J.W. Lee, J.J. Park, J.M. Hur, J.K. Kim, K.Y. Jung, and S.M. Jeong, "Electrochemical Reduction Behavior of a Highly Porous SIMFUEL Particle in a LiCl Molten Salt", Chem. Eng. J. 207-208, 514-520 (2012). https://doi.org/10.1016/j.cej.2012.06.161
  11. S.C. Jeon, J.W. Lee, J.H. Lee, S.J. Kang, K.Y. Lee, Y.Z. Cho, D.H. Ahn, and K.C. Song, "Fabrication of UO2 Porous Pellets on a Scale of 30 kg-U/Batch at the PRIDE Facility", Adv. Mater. Sci. Eng., 2015, 1-8 (2015).
  12. S.C. Jeon, J.W. Lee, S.J. Kang, J.H. Lee, J.W. Lee, G.I. Park, and I.T. Kim, "Temperature Dependences of the Reduction Kinetics and Densification Behavior of U3O8 Pellets in Ar Atmosphere", Ceram. Int., 41, 657-662 (2015). https://doi.org/10.1016/j.ceramint.2014.08.118
  13. Y.M. Pan, C.B. Ma, and N.N. Hsu, "The Conversion of UO2 via Ammonium Uranyl Carbonate: Study of Precipitation, Chemical Variation and Powder Properties," J. Nucl. Mater., 99, 135-147 (1981). https://doi.org/10.1016/0022-3115(81)90182-3

Cited by

  1. Residual salt separation technique using centrifugal force for pyroprocessing vol.50, pp.7, 2017, https://doi.org/10.1016/j.net.2018.06.009
  2. Composition-Dependent Structural Integrity of Hf6Ta2O17 Superstructure during Sintering in a Reducing Atmosphere vol.10, pp.11, 2017, https://doi.org/10.3390/app10113871
  3. Dissolution Behavior of Simulated Spent Nuclear Fuel in LiCl-KCl-UCl3 Molten Salt vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/9048775